THE
 AMERICAN MATHEMATICAL MONTHLY.

Entered at the Post-office at Springfleld, Missouri, as Second-class Mail Matter.
Vol. V.
MAY, 1898.
No. 5.

NON-EUCLIDEAN GEOMETRY: HISTORICAL AND EXPOSITORY.

By George bruce halsted, A. M. (Princeton); Ph. D. (Johns Hopkins); Member of the London Mathematical Society ; and Professor of Mathematics in the University of Texas, Austin, Texas.
|Continued from March Number. 1

Proposition XXXIV, in which is investigated a certain curve arising from the hypothesis of acute angle. [An equidistantial of a straight has its chords between it and the straight.]

Let the straight $C D$ join equal perpendiculars $A C, B D$ standing upon any straight $A B$. Then $A B$, $C D$ being bisected in the points M and H (Fig. 42.), $M H$ is joined perpendicular (by Proposition II) to each. Again in this hypothesis the angles at the join $C D$ are supposed acute. Therefore in the quadrilateral $\mathbf{A} M H C$ (by Corollary I after Proposition III) $\mathbf{M H}$ will be less than $A C$. Hence now, if in $M H$ produced

Fig. 42.
$M K$ be taken equal to $A C$, the points C, K, D pertain to the curve here investigated. Then the angles at the join $C K$ will be themselves acute (by Proposition VII).

Therefore the join L.X, which bisects, and therefore (by Proposition II), is at right angles to $A M, C K$, will be likewise (by Corollary I after Proposition III) less than $A C$. Wherefore, if in $L X$ produced we assume $L F$ equal to $A C$ or $M K$, the point F also will pertain to this curve. Further, joining $C F$, and
$F K$ we find likewise two other points pertaining to the same curve. And so on for ever.

But what I say for finding points between the points C and K, the same also holds good uniformly for finding points between the points K and D. Obviously the curve CKD, arising from the hypothesis of acute angle, is the line joining the extremities of all equal perpendiculars erected upon the same base toward the same part, which assuredly can come under the name ordinates. It is, I add, a line of such sort, that on account of the hypothesis of acute angle, from which it arises, it always is concave toward the parts of the opposite base $A B$. Quod quidem hoc loco declarandum, ac demonstrandum a nobis erat.

Proposition XXXV. If from any point L of the base $A B$ the ordinate LF is drawn to this curve CKD: I say the straight NFX perpendicular to LF must on both sides jall wholly toward the convex parts of this curve, and therefore it will be tangent to this curve.

Proof. For if possible, let a certain point X (Fig. 43.) of NFA fall within the cavity of this curve. Let fall from the point X to the base $A B$ the perpendicular $X P$, which prolonged through X meets the curve in a certain point R. Now thus. In the quadrilateral $L F X P$ the angle at the point X will be neither right nor obtuse : else (Proposition V and Proposition VI) would be destroyed the present hypothesis of acute angle.

Therefore the aforesaid angle will be acute. Wherefore (from Corollary I after Proposition III) $P X$ and so much more $P R$ will be greater than $L F$.

Fig. 43. But this is absurd (from the preceding) against the nature of this curve.

So $N F$ produced must fall wholly toward the convex parts, and so it will be tangent to this curve. (Quod erat demonstrandum.
|To be Continued. |
;

SUMMATION OF SERIES.

By G. B. M. ZERR, A. M., Ph. D., President and Professor of Mathematics, The Russell College, Lebanon, Va.

$$
\begin{align*}
& \frac{\sin h \theta}{\theta}=\left(1+\frac{H^{2}}{\pi^{2}}\right)\left(1+\frac{H^{2}}{2^{2} \pi^{2}}\right)\left(1+\frac{H^{2}}{3^{2} \pi^{2}}\right)\left(1+\frac{\theta^{2}}{4^{2} \pi^{2}}\right) \ldots \ldots \\
&=1+\frac{\theta^{2}}{3!}+\frac{A^{4}}{5!}+\frac{A^{6}}{7!}+\frac{H^{8}}{9!}+\ldots \ldots(A) . \tag{A}\\
& \therefore \log \left(1+\frac{t^{2}}{\pi^{2}}\right)+\log \left(1+\frac{H^{2}}{2^{2} \pi^{2}}\right)+\log \left(1+\frac{A^{2}}{3^{2} \pi^{2}}\right)+\log \left(1+\frac{H^{2}}{4^{2} \pi^{2}}\right) \ldots \ldots
\end{align*}
$$

$$
=\log \left[1+\left(\frac{A^{2}}{3!}+\frac{A^{4}}{5!}+\frac{A^{6}}{7!}+\frac{A^{8}}{9!}+\ldots . .\right)\right] .
$$

$$
\begin{gathered}
\therefore \frac{H^{2}}{\pi^{2}}\left(\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\ldots \ldots\right) \\
\\
-\frac{H^{4}}{2 \pi^{4}}\left(\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{4^{4}}+\frac{1}{5^{4}}+\ldots \ldots\right) . \\
+\frac{H^{6}}{3 \pi^{6}}\left(\frac{1}{1^{6}}+\frac{1}{2^{6}}+\frac{1}{3^{6}}+\frac{1}{4^{6}}+\frac{1}{5^{6}}+\ldots \ldots\right) \\
\\
-\frac{H^{8}}{4 \pi^{8}}\left(\frac{1}{1^{8}}+\frac{1}{2^{8}}+\frac{1}{3^{8}}+\frac{1}{4^{8}}+\frac{1}{5^{8}}+\ldots \ldots\right) \ldots \ldots \\
= \\
= \\
H^{2} \\
6
\end{gathered} \frac{H^{4}}{180}+\frac{H^{6}}{2835}-\frac{A^{8}}{37800}+\ldots \ldots .
$$

$$
\therefore \frac{1}{\pi^{2}}\left(\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\ldots \ldots\right)=\frac{1}{6}
$$

$$
\begin{equation*}
\text { and } \frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\ldots \ldots=\frac{\pi^{2}}{6} \tag{1}
\end{equation*}
$$

$-\frac{1}{2 \pi^{4}}\left(\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{4^{4}}+\frac{1}{5^{4}}+\ldots ..\right)=-\frac{1}{180}$

$$
\begin{equation*}
\text { and } \frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{4^{4}}+\frac{1}{5^{4}}+\ldots \ldots=\frac{\pi^{4}}{90} \tag{2}
\end{equation*}
$$

$\frac{1}{3 \pi^{6}}\left(\frac{1}{1^{6}}+\frac{1}{2^{6}}+\frac{1}{3^{6}}+\frac{1}{4^{6}}+\frac{1}{5^{6}}+\ldots ..\right)=\frac{1}{2835}$

$$
\begin{equation*}
\text { and } \frac{1}{1^{6}}+\frac{1}{2^{6}}+\frac{1}{3^{6}}+\frac{1}{4^{6}}+\frac{1}{5^{6}}+\ldots \ldots=\frac{\pi^{6}}{945} \tag{3}
\end{equation*}
$$

$-\frac{1}{4 \pi^{8}}\left(\frac{1}{1^{8}}+\frac{1}{2^{8}}+\frac{1}{3^{8}}+\frac{1}{4^{8}}+\frac{1}{5^{8}}+\ldots ..\right)=-\frac{1}{37800}$

$$
\text { and } \frac{1}{1^{8}}+\frac{1}{2^{8}}+\frac{1}{3^{8}}+\frac{1}{4^{8}}+\frac{1}{5^{8}}+\ldots \ldots=\frac{\pi^{8}}{9450} .
$$

$\cosh H=\left(1+\frac{4 H^{2}}{\pi^{2}}\right)\left(1+\frac{4 \theta^{2}}{3^{2} \pi^{2}}\right)\left(1+\frac{4 \theta^{2}}{5^{2} \pi^{2}}\right)\left(1+\frac{4 H^{2}}{7^{2} \pi^{2}}\right)$

$$
\begin{equation*}
=1+\frac{A^{2}}{2!}+\frac{A^{4}}{4!}+\frac{A^{6}}{6!}+\frac{A^{8}}{8!}+ \tag{B}
\end{equation*}
$$

$$
\begin{gathered}
\therefore \log \left(1+\frac{4 A^{2}}{\pi^{2}}\right)+\log \left(1+\frac{4 \theta^{2}}{3^{2} \pi^{2}}\right)+\log \left(1+\frac{4 A^{2}}{5^{2} \pi^{2}}\right)+\ldots \ldots \\
=\log \left[1+\left(\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}+\frac{\theta^{6}}{6!}+\frac{A^{8}}{8!}+\ldots \ldots\right)\right] . \\
\therefore \frac{4 A^{2}}{\pi^{2}}\left(\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\ldots \ldots\right)-\frac{16 \theta^{4}}{2 \pi^{4}}\left(\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\ldots \ldots\right) \\
+\frac{64 A^{6}}{3 \pi^{6}}\left(\frac{1}{1^{6}}+\frac{1}{3^{6}}+\frac{1}{5^{6}}+\frac{1}{7^{6}}+\ldots \ldots\right)-\frac{256 H^{8}}{4 \pi^{8}}\left(\frac{1}{1^{8}}+\frac{1}{3^{8}}+\frac{1}{5^{8}}+\frac{1}{7^{8}}+\ldots \ldots\right) \\
\ldots \ldots=\frac{A^{2}}{2}-\frac{H^{4}}{12}+\frac{A^{6}}{45}-\frac{17 H^{8}}{2520}+\ldots \ldots
\end{gathered}
$$

$$
\therefore \frac{4}{\pi^{2}}\left(\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\ldots \ldots\right)=\frac{1}{2}
$$

$$
\begin{equation*}
\text { and } \frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\ldots \ldots=\frac{\pi^{2}}{8} \tag{5}
\end{equation*}
$$

$-\frac{16}{2 \pi^{4}}\left(\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\ldots \ldots\right)=-\frac{1}{12}$

$$
\begin{equation*}
\text { and } \frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\ldots \ldots=\frac{\pi^{4}}{96} . \tag{6}
\end{equation*}
$$

$\frac{64}{3 \pi^{6}}\left(\frac{1}{1^{6}}+\frac{1}{3^{6}}+\frac{1}{5^{6}}+\frac{1}{7^{6}}+\ldots \ldots\right)={ }_{4}^{15}$

$$
\begin{equation*}
\text { and } \frac{1}{1^{6}}+\frac{1}{3^{6}}+\frac{1}{5^{6}}+\frac{1}{7^{6}}+\ldots \ldots=\frac{\pi^{6}}{960} \tag{7}
\end{equation*}
$$

$-\frac{256}{4 \pi^{8}}\left(\frac{1}{1^{8}}+\frac{1}{3^{8}}+\frac{1}{5^{8}}+\frac{1}{7^{8}}+\ldots \ldots\right)$

$$
\begin{equation*}
\text { and } \frac{1}{1^{8}}+\frac{1}{3^{8}}+\frac{1}{5^{8}}+\frac{1}{7^{8}}+\ldots \ldots=\frac{17 \pi^{8}}{161280} . \tag{8}
\end{equation*}
$$

(1)-(5) gives $\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}}+\frac{1}{8^{2}}+\cdots \ldots=\frac{\pi^{2}}{24}$
$(2)-(6)$ gives $\frac{1}{2^{4}}+\frac{1}{4^{4}}+\frac{1}{6^{4}}+\frac{1}{8^{4}}+\ldots=\frac{\pi^{4}}{1440}$
(3)-(7) gives $\frac{1}{2^{6}}+\frac{1}{4^{6}}+\frac{1}{6^{6}}+\frac{1}{8^{6}}+\ldots \ldots=\frac{\pi^{6}}{60480}$
(4)-(8) gives $\frac{1}{2^{8}}+\frac{1}{4^{8}}+\frac{1}{6^{8}}+\frac{1}{8^{8}}+$ $=\frac{\pi^{8}}{2419200}$
(5) -(9) gives $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\ldots \ldots=\frac{\pi^{2}}{12}$
(6) - (10) gives $\frac{1}{1^{4}}-\frac{1}{2^{4}}+\frac{1}{3^{4}}-\frac{1}{4^{4}}+\frac{1}{5^{4}}-\frac{1}{6^{4}}+\ldots==\frac{7 \pi^{4}}{720} \ldots$
(7)-(11) gives $\frac{1}{1^{6}}-\frac{1}{2^{6}}+\frac{1}{3^{6}}-\frac{1}{4^{6}}+\frac{1}{5^{6}}-\frac{1}{6^{6}}+\ldots .=\frac{31 \pi^{6}}{30240}$.
(8)-(12) gives $\frac{1}{1^{8}}-\frac{1}{2^{8}}+\frac{1}{3^{8}}-\frac{1}{4^{8}}+\frac{1}{5^{8}}-\frac{1}{6^{8}}+\ldots \ldots=\frac{11 \pi^{8}}{172800}$

1 of (1) gives $\frac{1}{1.2}+\frac{1}{2.4}+\frac{1}{3.6}+\frac{1}{4.8}+\ldots \ldots=\frac{\pi^{2}}{12}=(13)$.
I of (5) gives $\frac{1}{1.2}+\frac{1}{3.6}+\frac{1}{5.10}+\frac{1}{7.14}+\ldots \ldots=\frac{\pi^{2}}{16} \ldots$
$\frac{1}{}$ of (1) gives $\frac{1}{1.3}+\frac{1}{2.6}+\frac{1}{3.9}+\frac{1}{4.12}+\ldots .=\frac{\pi^{2}}{18}$.
t of (5) gives $\frac{1}{1.3}+\frac{1}{3.9}+\frac{1}{5.15}+\frac{1}{7.21}+\ldots \ldots=\frac{\pi^{2}}{24}=(9)$.
t of (1) gives $\frac{1}{1.4}+\frac{1}{2.8}+\frac{1}{3.12}+\frac{1}{4.16}+\ldots \ldots=\frac{\pi^{2}}{24}=(9)=(20) \ldots$
of (5) gives $\frac{1}{1 .}+1$
t of (5) gives $\frac{1}{1.4}+\frac{1}{3.12}+\frac{1}{5.20}+\frac{1}{7.28}+\ldots \ldots=\frac{\pi^{2}}{32}$
(17) - (18) gives $\frac{1}{2.4}+\frac{1}{4.8}+\frac{1}{6.12}+\frac{1}{8.16}+\ldots \ldots=\frac{\pi^{2}}{48}$
(19) $-(20)$ gives $\frac{1}{2.6}+\frac{1}{4.12}+\frac{1}{6.18}+\frac{1}{8.24}+\ldots .=\frac{\pi^{2}}{72}$.
(21)-(22) gives $\frac{1}{2.8}+\frac{1}{4.16}+\frac{1}{6.24}+\frac{1}{8.32}+\ldots=\frac{\pi^{2}}{96}$
(1)-(2) gives $\frac{1}{1}-1,1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1$
$\therefore \frac{3}{2^{4}}+\frac{8}{3^{4}}+\frac{15}{4^{4}}+\frac{24}{5^{4}}+\ldots \ldots=\frac{\pi^{2}}{6}\left(1-\frac{\pi^{2}}{15}\right) \ldots \ldots \ldots \ldots \ldots\left(1-\frac{5^{2}}{15}\right)$.
(2) - (3) gives $\frac{3}{2^{6}}+\frac{8}{3^{6}}+\frac{15}{4^{6}}+\frac{24}{5^{6}}+\ldots \ldots=\frac{\pi^{4}}{45}\left(\frac{1}{2}-\frac{\pi^{2}}{21}\right)$
(3) - (4) gives $\frac{3}{2^{8}}+\frac{8}{3^{8}}+\frac{15}{4^{8}}+\frac{24}{5^{8}}+\ldots \ldots=\frac{\pi^{8}}{945}\left(1-\frac{\pi^{2}}{10}\right)$
(5) $-(6)$ gives $\frac{8}{3^{4}}+\frac{24}{5^{4}}+\frac{48}{7^{4}}+\frac{80}{9^{4}}+\ldots \ldots=\frac{\pi^{2}}{8}\left(1-\frac{\pi^{2}}{12}\right)$
(6) $-(7)$ gives $\frac{8}{3^{6}}+\frac{24}{5^{6}}+\frac{48}{7^{6}}+\frac{80}{9^{6}}+\ldots \ldots=\frac{\pi^{4}}{96}\left(1-\frac{\pi^{2}}{10}\right)$
(7) $-(8)$ gives $\frac{8}{3^{8}}+\frac{24}{5^{8}}+\frac{48}{7^{8}}+\frac{80}{9^{8}}+\ldots \ldots=\frac{\pi^{6}}{960}\left(1-\frac{17 \pi^{2}}{168}\right)$
(9)-(10) gives so also (26)-(29)
$\frac{3}{2^{4}}+\frac{15}{4^{4}}+\frac{35}{6^{4}}+\frac{63}{8^{4}}+\ldots \ldots=\frac{\pi^{4}}{24}\left(1-\frac{\pi^{2}}{60}\right)$
(10)-(11) gives so also (27)-(30)
$\frac{3}{2^{6}}+\frac{15}{4^{6}}+\frac{35}{6^{6}}+\frac{63}{8^{4}}+\ldots \ldots=\frac{\pi^{4}}{1440}\left(1-\frac{\pi^{2}}{42}\right)$.
(11)-(12) gives so also (28)-(31)
$\frac{3}{2^{8}}+\frac{15}{4^{8}}+\frac{35}{6^{8}}+\frac{63}{8^{8}}+\ldots \ldots=\frac{\pi^{6}}{60480}\left(1-\frac{\pi^{2}}{40}\right)$
$\frac{1}{8}$ of (29) gives $\frac{1}{3^{4}}+\frac{3}{5^{4}}+\frac{6}{7^{4}}+\frac{10}{9^{4}}+\ldots \ldots=\frac{\pi^{2}}{64}\left(1-\frac{\pi^{2}}{12}\right)$
$\frac{1}{8}$ of (30) gives $\frac{1}{3^{6}}+\frac{3}{5^{6}}+\frac{6}{7^{6}}+\frac{10}{9^{6}}+\ldots . .=\frac{\pi^{2}}{768}\left(1-\frac{\pi^{2}}{10}\right)$
$\frac{1}{8}$ of (31) gives $\frac{1}{3^{8}}+\frac{3}{5^{8}}+\frac{6}{7^{8}}+\frac{10}{9^{8}}+\ldots \ldots=\frac{\pi^{6}}{7680}\left(1-\frac{17 \pi^{2}}{168}\right)$
Squaring (1) gives $\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+$

$$
+\frac{2}{1^{2} \cdot 2^{2}}+\frac{2}{1^{2} \cdot 3^{2}}+\frac{2}{2^{2} \cdot 3^{2}}+\ldots \ldots=\frac{\pi^{4}}{36} .
$$

$$
\therefore \frac{1}{1^{2} \cdot 2^{2}}+\frac{1}{1^{2} \cdot 3^{2}}+\frac{1}{1^{2} \cdot 4^{2}}+\frac{1}{2^{2} \cdot 3^{2}}+\frac{1}{2^{2} \cdot 4^{2}}+\frac{1}{3^{2} \cdot 4^{2}}+\ldots \ldots
$$

$$
\begin{equation*}
=\frac{1}{2}\left(\frac{\pi^{4}}{36}-\frac{\pi^{4}}{90}\right)=\frac{\pi^{4}}{120}=\frac{\pi^{4}}{5!} . \tag{38}
\end{equation*}
$$

Squaring (2) gives with (4)

$$
\frac{1}{1^{4} \cdot 2^{4}}+\frac{1}{1^{4} \cdot 3^{4}}+\frac{1}{1^{4} \cdot 4^{4}}+\frac{1}{2^{4} \cdot 3^{4}}+\frac{1}{2^{4} \cdot 4^{4}}+\frac{1}{3^{4} \cdot 4^{4}}+\ldots .
$$

$$
\begin{equation*}
=1\left(\frac{\pi^{8}}{8100}-\frac{\pi^{8}}{9450}\right)=\frac{\pi^{8}}{113400} \tag{39}
\end{equation*}
$$

Squaring (5) gives with (6)
$\frac{1}{1^{2} \cdot 3^{2}}+\frac{1}{1^{2} \cdot 5^{2}}+\frac{1}{1^{2} \cdot 7^{2}}+\frac{1}{3^{2} \cdot 5^{2}}+\frac{1}{3^{2} \cdot 7^{2}}+\frac{1}{5^{2} \cdot 7^{2}}+\ldots$.

$$
\begin{equation*}
=\frac{1}{2}\left(\frac{\pi^{4}}{64}-\frac{\pi^{4}}{96}\right)=\frac{\pi^{4}}{384}=\frac{\pi^{2}}{4^{2}(4!)} . \tag{40}
\end{equation*}
$$

Squaring (6) gives with (8)
$\frac{1}{1^{4} \cdot 3^{4}}+\frac{1}{1^{4} \cdot 5^{4}}+\frac{1}{1^{4} \cdot 7^{4}}+\frac{1}{3^{4} \cdot 5^{4}}+\frac{1}{3^{4} \cdot 7^{4}}+\frac{1}{5^{4} \cdot 7^{4}}+\ldots$.

$$
\begin{equation*}
=\frac{1}{2}\left(\frac{\pi^{2}}{9216}-\frac{17 \pi^{8}}{161280}\right)=\frac{\pi^{8}}{645120} \tag{41}
\end{equation*}
$$

Squaring (9) gives with (10)
$\frac{1}{2^{2} \cdot 4^{2}}+\frac{1}{2^{2} \cdot 6^{2}}+\frac{1}{2^{2} \cdot 8^{2}}+\frac{1}{4^{2} \cdot 6^{2}}+\frac{1}{4^{2} \cdot 8^{2}}+\frac{1}{6^{2} \cdot 8^{8}}+\ldots \ldots$

$$
\begin{equation*}
=\frac{1}{2}\left(\frac{\pi^{4}}{576}-\frac{\pi^{2}}{1440}\right)=\frac{\pi^{4}}{1920} \tag{42}
\end{equation*}
$$

Squaring (10) gives with (12)
$\frac{1}{2^{4} \cdot 4^{4}}+\frac{1}{2^{4} \cdot 6^{4}}+\frac{1}{2^{4} \cdot 8^{4}}+\frac{1}{4^{4} \cdot 6^{4}}+\frac{1}{4^{4} \cdot 8^{4}}+\frac{1}{6^{4} \cdot 8^{4}}+\ldots \ldots$.

$$
\begin{equation*}
\left.=\frac{\pi^{8}}{2073600}-\frac{\pi^{8}}{241920}\right)=\frac{\pi^{8}}{29030400} . \tag{43}
\end{equation*}
$$

$1 /\left[\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{5^{2}}\right)\left(1-\frac{1}{7^{2}}\right) \ldots\right]=\left(1+\frac{1}{2^{2}}+\frac{1}{2^{4}}+\frac{1}{2^{6}}+\ldots\right)$

$$
\left(1+\frac{1}{3^{2}}+\frac{1}{3^{4}}+\frac{1}{3^{6}}+\ldots\right)\left(1+\frac{1}{5^{2}}+\frac{1}{5^{4}}+\frac{1}{5^{6}}+\ldots\right) \ldots
$$

$$
\begin{align*}
& =\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\ldots=\frac{1}{6} \pi^{2} \ldots(44), \\
& 1 /\left[\left(1-\frac{1}{2^{4}}\right)\left(1-\frac{1}{3^{4}}\right)\left(1-\frac{1}{5^{4}}\right)\left(1-\frac{1}{7^{4}}\right) \ldots .\right] \\
& =\left(1+\frac{1}{2^{4}}+\frac{1}{2^{8}}+\frac{1}{2^{12}}+\ldots\right)\left(1+\frac{1}{3^{4}}+\frac{1}{3^{8}}+\frac{1}{3^{12}}+\ldots .\right) \\
& \left(1+\frac{1}{5^{4}}+\frac{1}{5^{12}}+\ldots\right) . \\
& =\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{4^{4}}+\frac{1}{5^{4}}+\ldots .=\frac{\pi^{4}}{90} \tag{45}\\
& \text { Similarly, } \\
& 1 /\left[\left(1-\frac{1}{2^{6}}\right)\left(1-\frac{1}{3^{6}}\right)\left(1-\frac{1}{5^{6}}\right)\left(1-\frac{1}{7^{6}}\right) \cdots \cdots\right]=\frac{\pi^{6}}{945} \text {. } \tag{46}\\
& 1 /\left[\left(1-\frac{1}{2^{8}}\right)\left(1-\frac{1}{3^{8}}\right)\left(1-\frac{1}{5^{8}}\right)\left(1-\frac{1}{7^{8}}\right) \ldots . .\right]=\frac{\pi^{8}}{9450} . \tag{47}\\
& \text { Hence, } \\
& \left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{5^{2}}\right)\left(1-\frac{1}{7^{2}}\right) \ldots \ldots=\frac{6}{\pi^{2}} \tag{48}\\
& \left(1-\frac{1}{2^{4}}\right)\left(1-\frac{1}{3^{4}}\right)\left(1-\frac{1}{5^{4}}\right)\left(1-\frac{1}{7^{4}}\right) \ldots \ldots=\frac{90}{\pi^{4}} \tag{49}\\
& \left(1-\frac{1}{2^{6}}\right)\left(1-\frac{1}{3^{6}}\right)\left(1-\frac{1}{5^{6}}\right)\left(1-\frac{1}{7^{6}}\right) \ldots \ldots=\frac{945}{\pi^{6}} \tag{50}\\
& \left(1-\frac{1}{2^{8}}\right)\left(1-\frac{1}{3^{8}}\right)\left(1-\frac{1}{5^{8}}\right)\left(1-\frac{1}{7^{8}}\right) \ldots \ldots=\frac{9450}{\pi^{8}} \tag{51}\\
& \left(1+\frac{1}{2^{2}}\right)\left(1+\frac{1}{3^{2}}\right)\left(1+\frac{1}{5^{2}}\right)\left(1+\frac{1}{7^{2}}\right) \ldots \ldots \\
& \frac{\left(1-\frac{1}{2^{4}}\right)\left(1-\frac{1}{3^{4}}\right)\left(1-\frac{1}{5^{4}}\right)\left(1-\frac{1}{7^{4}}\right) \ldots \ldots}{\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{5^{2}}\right)\left(1-\frac{1}{7^{2}}\right) \ldots \ldots}=\frac{\frac{90}{\pi^{4}}}{\frac{6}{\pi^{2}}}=\frac{15}{\pi^{2}} \tag{52}\\
& \left(1+\frac{1}{2^{4}}\right)\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{5^{4}}\right)\left(1+\frac{1}{7^{4}}\right) \ldots .
\end{align*}
$$

$$
\begin{align*}
& =\frac{\left(1-\frac{1}{2^{8}}\right)\left(1-\frac{1}{3^{8}}\right)\left(1-\frac{1}{5^{8}}\right)\left(1-\frac{1}{7^{8}}\right) \ldots \ldots}{\left(1-\frac{1}{2^{4}}\right)\left(1-\frac{1}{3^{4}}\right)\left(1-\frac{1}{5^{4}}\right)\left(1-\frac{1}{7^{4}}\right) \ldots \ldots}=\frac{\frac{9450}{\pi^{8}}}{\frac{90}{\pi^{4}}}=\frac{105}{\pi^{4}} . \tag{53}\\
& \left(1+\frac{1}{2^{2}}+\frac{1}{2^{4}}\right)\left(1+\frac{1}{3^{2}}+\frac{1}{3^{4}}\right)\left(1+\frac{1}{5^{2}}+\frac{1}{5^{4}}\right)\left(1+\frac{1}{7^{2}}+\frac{1}{7^{4}}\right) \ldots \ldots \\
& =\frac{\left(1-\frac{1}{2^{6}}\right)\left(1-\frac{1}{3^{6}}\right)\left(1-\frac{1}{5^{6}}\right)\left(1-\frac{1}{7^{6}}\right) \ldots \ldots}{\left(1-\frac{1}{2^{7}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{5^{2}}\right)\left(1-\frac{1}{7^{2}}\right) \ldots \ldots}=\frac{\frac{945}{\pi^{6}}}{\frac{6}{\pi^{2}}}=\frac{315}{2 \pi^{4}} . \tag{54}
\end{align*}
$$

From (A) by inspection,
$\frac{1}{1^{2} \cdot 2^{2} \cdot 3^{2}}+\frac{1}{1^{2} \cdot 2^{2} \cdot 4^{2}}+\frac{1}{1^{2} \cdot 3^{2} \cdot 4^{2}}+\frac{1}{2^{2} \cdot 3^{2} \cdot 4^{2}}+\ldots \ldots=\frac{\pi^{6}}{7!}$
$\frac{1}{1^{2} \cdot 2^{2} \cdot 3^{2} \cdot 4^{2}}+\frac{1}{1^{2} \cdot 2^{2} \cdot 3^{2} \cdot 5^{2}}+\frac{1}{1^{2} \cdot 3^{2} \cdot 4^{2} \cdot 5^{2}}+\ldots \ldots=\frac{\pi^{8}}{9!} \cdots$
Generally $\frac{1}{1^{2} .2^{2} \ldots(n-1)^{2}}+\frac{1}{1^{2} \cdot 3^{2} \ldots n^{2}}+\frac{1}{1^{2} \cdot 2^{2} \cdot 4^{2} \ldots n^{2}}+\ldots .=\frac{\pi^{2 n}}{(2 n+1)!} \ldots$ (57).
When $A=\pi, \frac{1}{\pi} \sinh \pi=\left(1+\frac{1}{1^{2}}\right)\left(1+\frac{1}{2^{2}}\right)\left(1+\frac{1}{3^{2}}\right)\left(1+\frac{1}{4^{2}}\right)\left(1+\frac{1}{5^{2}}\right) \ldots$
$=1+\frac{\pi^{2}}{3!}+\frac{\pi^{4}}{5!}+\frac{\pi^{6}}{7!}+\frac{\pi^{8}}{9!}+\ldots(59)=1+(1)+(38)+(55)+(56)+\ldots(60)$.
From (B) by inspection,
$\frac{1}{1^{2} \cdot 3^{2} \cdot 5^{2}}+\frac{1}{1^{2} \cdot 3^{2} \cdot 7^{2}}+\frac{1}{3^{2} \cdot 5^{2} \cdot 7^{2}}+\ldots \ldots=\frac{\pi^{6}}{4^{3}(6!)}$
$\frac{1}{1^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}}+\frac{1}{1^{2} \cdot 3^{2} \cdot 5^{2} \cdot 9^{2}}+\frac{1}{3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 9^{2}}+\ldots \ldots=\frac{\pi^{8}}{4^{4}(8!)}$
Generally $\frac{1}{1^{2} .3^{2} \text { to } n \text { factors }}+\frac{1}{1^{2} .5^{2} \text { to } n \text { factors }}+\ldots \ldots=\frac{\pi^{2 n}}{4^{n}(2 n!)}$
When $\theta=\pi, \cosh \pi=\left(1+\frac{4}{1^{2}}\right)\left(1+\frac{4}{3^{2}}\right)\left(1+\frac{4}{5^{2}}\right)\left(1+\frac{4}{7^{2}}\right)$
$=1+\frac{\pi^{2}}{2!}+\frac{\pi^{4}}{4!}+\frac{\pi^{6}}{6!}+\frac{\pi^{8}}{8!}+.(65)=1+4(5)+4^{2}(40)+4^{3}(61)+4^{4}(62)+.(66)$.
$2 \cosh \pi=e^{\pi}+e^{-\pi}=2\left(1+2^{2}\right)\left[1+\left(\frac{2}{3}\right)^{2}\right]\left[1+\left(\frac{2}{5}\right)^{2}\right]\left[1+\left(\frac{2}{7}\right)^{2}\right] \ldots$
$2 \sinh \pi=e^{\pi}-e^{-\pi}=4 \pi\left[1+\left(\frac{1}{2}\right)^{2}\right]\left[1+\left(\frac{1}{3}\right)^{2}\right]\left[1+\left(\frac{1}{4}\right)^{2}\right]\left[1+\left(\frac{1}{5}\right)^{2}\right]$
The number of series summed above is deemed sufficient for illustration, although many more could be summed from the above relations.

DEPARTMENTS.

SOLUTIONS OF PROBLEMS.

ARITHMETIC.

90. Proposed by B. F. FINKEL, A. M.,M. Sc., Professor of Mathematies and Physics, Drury College, Springfield, Mo.

Find the greatest number of inch balls that can be placed in a box 10 inches square and 5 inches deep.

Solution by MARTIN SPINX, Wilmington, Ohio, and the PROPOSER.
Using as a base a side of the box, we can place on this base, by square arrangement 50 balls. But by placing 5 balls in the first row, 4 in the second, and 5 in the third, and so on, we can place 50 balls in the first layer, there being 6 rows of 5 balls, and 5 rows of 4 balls. These eleven rows will leave .339 inches between the eleventh row and the end of the box. By placing the second layer of balls in the trihedral spaces of the first layer, the two layers will occupy a space 1 inch $+V\left\{1^{2}-\left[\frac{2}{8}\left(\frac{1}{2} / 3\right)\right]^{2}\right\}$ inches, $=1.8165$ inches, high.

Since the centers of the first row in the second layer are .289 inches in advance of the centers of the first row in the first layer, it follows that eleven rows can be put in the second layer, there being .339 inches-. 289 inches, or . 05 inches more room than is needed. But the second layer contains 49 balls,-the six odd rows containing 4 each and the five even rows 5 each. In this we can place in the box twelve layers,- 50 balls in each of the odd numbered layers, and 49 in each of the even numbered layers. This makes a tutal of 594 balls.

Also solved, with different results, by G. B. M. ZERR, CHAS. C. CROSS, and FREMONT CRANE.
90. Proposed by F. M. PRIEST, Mona House, St. Louis, Mo.

A owes $\$ 6000$ which is drawing 6% interest. He wishes to pay off the debt in six equal annual payments, the first to be due in one year. The whole portion of the claim unpaid at the end of each year to be accounted as principal, and to draw interest to the time of the next payment. Required the amount of each payment, so the six annual payments will discharge the obligation, interest and all.
I. Proposed by P. S. BERG, Superintendent of Schools, Larimore, N. D.; J. A. M00RE. Professor of Mathematics. Millsaps College, Millsaps, Miss.; M. E. Graber, Mt. Eaton, 0.; MARTIN SPINX, Wilmington, O., M. A. GRUBER, A. M., War Department, Washington, D. C.

Let $x=$ annual payment.
Put $a=$ debt, $r=$ rate of interest, and $n=$ number of annual payments.
We then have the general formula,

$$
\frac{(100+r)\left\{\begin{array}{c}
\ldots \ldots(100+r)\left(\frac{(100+r) a}{100}-x\right) \\
\frac{100}{\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots}-x
\end{array}\right\}}{100} \text { to nth payment }
$$

which reduces to

$$
a(100+r)^{n}=x\left[100(100+r)^{n-1}+100^{2}(100+r)^{n-2}+\ldots+100^{n-1}(100+r)+100^{n}\right]
$$

Now, substituting 6 for $r, 6$ for n, and 6000 for a, we obtain

$$
\begin{aligned}
& 6000 \times 1.06^{6}=x\left(1.06^{5}+1.06^{4}+1.06^{3}+1.06^{2}+1.06+1\right) . \\
\therefore x= & 8511.114673536 \div 6.9753185376=1220.1757+.
\end{aligned}
$$

II. Solution by F. R. HONEY, Ph. B., New Haven, Conn.

Let $x=$ amount of each annual payment.
$\therefore 6000+.06 \times 6000-x=6360-x=$ amount left after first payment.
And $6360-x+.06(6360-x)-x=6741.6-2.06 x=$ amount left after second payment.

Similarly, $7146.096-3.1836 x=$ amount left after third payment.
Similarly, $7574.86176-4.374616 x=$ amount left after fourth payment.
Similarly, 8029.3534656-5.63709296x=amount left after fifth payment.
Similarly, 8511.114673536-6.9753185376x=amount after sixth payment.
Then 8511.114673536-6.9753185376x $=0$.
$\therefore 6.9753185376 x=8511.114673536$.
$\therefore x=81220.176=$ annual payment .
III. Solution by G. B. M. ZERR, A. M.. Ph. D., President and Professor of Mathematics, The Russell Collego, Lebanon, Va.; W. H. DRANE, A. M., Professor of Mathematics, Jefferson Military College, Washington, Miss.

The portions of the principal paid each year are as
$1,1 / 1.06,1 /(1.06)^{2}, 1 /(1.06)^{3}, 1 /(1.06)^{4}, 1 /(1.06)^{5}$; or as $(1.06)^{5},(1.06)^{4}$, $(1.06)^{3},(1.06)^{2}, 1.06,1$; or as $1.338226,1.262477,1.191016,1.1236,1.06,1$.
$1.338226+1.262477+1.191016+1.1236+1.06+1=6.976319$.
$(1 / 6.975319) \times \$ 6000=\$ 860.1757$.
$8860.1756+\$ 6000 \times .06=\$ 860.1758+8360=\$ 1220.1757$, first payment.
$86000-\$ 860.1757=\$ 5139.8243$, amount still unpaid.
$(1.06 / 6.975319) \times \$ 6000=\$ 911.7862$.
$\$ 911.7862+\$ 5139.8243 \times .06=\$ 911.7862+8308.3895=\$ 1220.1757$, second payment.
$\$ 5139.8243-\$ 911.7862=\$ 4228.0381$, amount still unpaid.
$\left[(1.06)^{2} / 6.975319\right] \times \$ 6000=\$ 966.4934$.
$\$ 966.4934+\$ 4228.0381 \times .06=\$ 966.4934+\$ 253.6823=\$ 1220.1757, \quad$ third payment.
$\$ 4228.0381-\$ 966.4934=83261.5447$, amount still unpaid.
$\left[(1.06)^{3} / 6.975319\right] \times 86000=\$ 1024.4830$.
$\$ 1024.4830+\$ 3261.5447 \times .06=\$ 1024.4830+\$ 195.6927=\$ 1220.1757, \quad 4$ th payment.
$\$ 3261.5447-\$ 1024.4830=\$ 2237.0617$, amount still unpaid.
$\left[\left(1 .(16)^{4} / 6.975319\right] \times \$ 6000=\$ 1085.9520\right.$.
$\$ 1085.9520+\$ 2237.0617 \times .06=81085.9520+\$ 134.2237=81220.1757$, fifth payment.
$\$ 2237.0617-\$ 1085.9520=\$ 1151.1097$, amount still unpaid.
$\left[(1.06)^{5} / 6.975319\right] \times \$ 6000=\$ 1151.1091$.
$\$ 1151.1091+\$ 1151.1097 \times .06=\$ 1151.1091+\$ 69.0666=\$ 1220.1757$, sixth payment.
$\$ 1151.1097-\$ 1151.1091=-80.0006$, unpaid still.
The above is all the work necessary for determining each equal payment, and at the same time working out the problem in full.

A short method by algebra is, $p=\frac{6000 \times .06(1.06)^{6}}{(1.06)^{6}-1}=\$ 1220.176$.
91. Proposed by J. A. CALDERHEAD, M. Sc., Professor of Mathematics in Curry University, Pittsburg, Pa. $\$ 1000.00$.

Cleveland, Ohio, May 26, 1893.
Two years after date I promise to pay John Davis, or order, one thousand dollars, for value received, interest six per cent. payable annually.
J. M. Lewis.

Indorsements: December 14, 1895, \$560.56; May 11, 1896, *10.02; June 14, 1897, \$545.06.

Find, by the United States' Rule, the amount due August 2, 1897.
Solution by G. B. M. ZERR, A. M., Ph. D., President and Professor of Mathematies, The Russell College, Lebanon, Va.; WALTER HUGH DRANE, A. M., Jefferson Military College, Washington, Miss.; and MARTIN SPINX, Wilmington, Ohio.

Principal
81000.00

Interest to December 14, 1895, 2 years, 6 months, 18 days,
Amount,
First payment December 14, 1895,
New principal,
Interest to June 14, 1897, 1 year, 6 months,
Amount,
Second payment, May 11, 1896,
Third payment, June 14, 1897,
New principal,
Interest to August 1, 1897, 1 month, 18 days,
$8 \quad 90.6796$
.7254
Amount or balance due, Drane, in a second solution does the same, but he gets a result of $\$ 100.138$.

Remark. Mr. Drummond raises the question as to whether Mr. J. F. Travis's solution of problem 87 , Arithmetic, is strictly an arithmetical solution. To my mind it is strictly an algebraical solution. A pure arithmetical solution of a problem would involve only the operations of addition, subtraction, multiplication, division, involution, and evolution, without the use of equations. A solution in which the result sought is represented by some character, and then this character operated upon until certain conditions of the problem are fulfilled, which conditions are then stated in the form of an equation from which the numerical value of the character is to be determined, is an algebraic solution. It is immaterial what sort of a character is used, whether it be $\left(\frac{9}{2}\right), \frac{3}{3}, x, \phi$, or any other character. However, the solution referred to is a very good one, and by the use of such solutions students in arithmetic are given, unconsciously to themselves, a most excellent preparation for the study of algebra. The mathematician is often called upon to solve problems in a certain way. When a problem is proposed and the restriction put upon it, viz., that it be solved by arithmetic, or algebra, or geometry, the problem often becomes impossible. From such unfortunate restrictions, has arisen the idea of the insolvability of the three famous problems of geometry, viz., the Trisection of an Angle, the Duplication of the Cube, and the Quadrature of the Circle. These problems are each easily solved if the solutions are not restricted to the use of the straight edge and compass only. But with these restrictions they are absolutely unsolvable.

There are many problems whose solutions cannot be effected when restricted in the way previously mentioned, but those referred to above are the only ones that have become famous.

ALGEBRA.

81. II. Solution by C. W. M. BLACK, A. M., Prolessor of Mathematics, Wesleyan Academy, Wilbraham, Mase.
[See problem and solution I, in April number, page 105.] The proposition cannot be proved unless r is integral and positive, as can be shown by substitution of numerical values.

Consider the only two fractions in whose denominators any factor as $\left(a_{1}-a_{2}\right)$ appears, putting them in the form

$$
\begin{aligned}
& \left(a_{1}{ }^{r}\right) /\left[\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)\left(a_{1}-a_{4}\right) \ldots \ldots\left(a_{1}-a_{n}\right)\right]-\left(a_{2}{ }^{r}\right) \\
& \quad /\left[\left(a_{1}-a_{2}\right)\left(a_{2}-a_{3}\right)\left(a_{2}-a_{4}\right) \ldots \ldots\left(a_{2}-a_{n}\right)\right]=\left(a_{1}^{r}\right) \\
& \quad /\left[\left(a_{1}-a_{2}\right)\left(a_{1}{ }^{n-2} P_{1} a_{1}{ }^{n-3}+P_{2} a_{1}^{n-4}-\ldots . \pm P_{n-2}\right)\right] \\
& \quad \quad-\left(a_{2}{ }^{r}\right) /\left[\left(a_{1}-a_{2}\right)\left(a_{2}{ }^{n-2} P_{1} a_{2}{ }^{n-3}+P_{2} a^{n-4}-\ldots . \pm P_{n-2}\right)\right]
\end{aligned}
$$

where $P_{k}=$ the sum of the products of $a_{3}, a_{4}, \ldots \ldots a_{n}$ taken k at a time.
Combining, we have

$$
\begin{align*}
& {\left[a_{1}^{r}\left(a_{2}{ }^{n-2}-P_{1} a_{2}^{n-3}+P_{2} a_{2}^{n-4}-\ldots \ldots \pm P_{n-2}\right)\right.} \\
& \left.\quad-a_{2}^{r}\left(a_{1}^{n-2}-P_{1} a_{1}^{n-3}+P_{2} a_{1}^{n-4}-\ldots P_{n-2}\right)\right] \\
& \quad\left[\left(a_{1}-a_{2}\right)\left(a_{1}^{n-2}-P_{1} a^{n-3}+P_{2} a_{1}^{n-4}-\ldots \ldots \pm P_{n-2}\right)\right. \\
& \left.\quad\left(a_{2}^{n-2}-P_{1} a_{2}^{n-3}+P_{2} a_{2}^{n-4}-\ldots \ldots \pm P_{n-2}\right)\right] . \tag{1}
\end{align*}
$$

Put the numerator of (1) in the form

$$
\begin{gathered}
\left(a_{1}^{r} a_{2}{ }^{n-2}-a^{r} a_{1}^{n-2}\right)-P_{1}\left(a_{1}^{r} a_{2}^{n-3}-a_{2}^{r} a_{1}^{n-3}\right)+\ldots \ldots \pm P_{n-2}\left(a_{1}^{r}-a_{2}^{r}\right) \\
=a_{1}{ }^{n-2} a_{2}{ }^{n-2}\left(a_{1}^{r-n+2}-a_{2}^{r-n+2}\right)-P_{1} a_{1}{ }^{n-3} a_{2}^{n-3}\left(a_{1}^{r-n+3}-a_{2}^{r-n+3}\right) \\
\quad+\ldots \ldots \pm P_{n-2}\left(a_{1}^{r}-a_{2}^{r}\right) \ldots \ldots \text { (2). }
\end{gathered}
$$

If n is not greater than $r+2$ each group of (2) and consequently the whole expression is divisible by ($a_{1}-a_{2}$). If $n>r+2$, let $n=r+8$; then change (2) to the form

$$
\begin{gathered}
a_{1}{ }^{r} a_{2} r\left[\left(a_{2}{ }^{n-2-r}-a_{1}{ }^{n-2-r}\right)-P_{1}\left(a_{2}{ }^{n-s-r}-a_{1}{ }^{n-3-r}\right)+\ldots \ldots\right. \\
\left. \pm P_{s-2}\left(a_{2}{ }^{n-s-r}-a_{1}{ }^{n-s-r}\right)\right] \mp\left[P_{s-1} a_{1}^{n-s-1} a_{2}{ }^{n-s-1}\left(a_{1}{ }^{r-n+s+1}-a_{2}^{r-n+s+1}\right)\right. \\
\quad-P_{s} a_{1}^{n-s-2} a_{2}^{n-s-2}\left(a_{1}{ }^{r-n+s+2}-a_{2}^{r-n+s+2}\right) \\
\left.\quad+\ldots \ldots \pm P_{n-2}\left(a_{1}^{r}-a_{2}{ }^{r}\right)\right] \ldots \ldots(3),
\end{gathered}
$$

the term in the second group of (3) being the same as the corresponding term of (2). Each group in (3) is also divisible by $\left(a_{1}-a_{2}\right)$. Accordingly in all cases (1) can be reduced to a form in which ($a_{1}-a_{2}$) is not a factor of the denominator, and as the two fractions forming (1) are the only ones that contain ($a_{1}-a_{2}$) in their denominators, the original expression need not contain $\left(a_{1}-a_{2}\right)$ in its denominator ; that is, $\left(a_{1}-a_{2}\right)$ will divide into the numerator formed by adding the fractions as they stand.

In like manner we prove that any other factor ($a_{2}-a_{3}$), etc., will divide into the numerator, or the numerator will be divisible by the entire lowest common denominator.

Now if $r<n-1$ each fraction, and consequently the sum of all, will have a numerator of lower degree in a_{1}, a_{2}, a_{3}, etc., than the denominator. But as the numerator is divisible by the denominator, this is possible only when the numerator equals zero.

If $r=n-1$, numerator and denominator will have same degree, and the quotient can be only a numerical factor. Now in the numerator $a_{1}{ }^{r}$ has for its coefficient the product of all factors not containing a_{1}, which same coefficient it has in the expansion of the denominator. Therefore the quotient must equal 1.

If $r=n$ the numerator is of a degree 1 higher than the denominator and the quotient must be of the first degree. In the numerator the coefficient of $a_{1}{ }^{r}$ is the same as the coefficient of $a_{1}{ }^{n-1}\left(=a_{1}{ }^{r-1}\right)$ in denominator, these being the highest powers of a_{1} in each. Then one term of the quotient must be a_{1}. In
like manner we show that $a_{2}, a_{3}, \ldots \ldots a_{n}$ must all be true of quotient, and as the expression is symmetrical with respect to these, the value must be

$$
a_{1}+a_{2}+a_{3}+\ldots \ldots+a_{n}
$$

GEOMETRY.

87. Proposed by WALTER HUGH DRANE, A. M., Professor of Mathematics, Jefferson Military Academy, Washington, Miss.

Given any two straight lines in space, $A B, C D$, which do not intersect. So construct upon one of the lines as base, a triangle, having its vertex in the other line, such that its perimeter shall be a minimum.

1. Solution by the PROPOSER.

Let $A B$ and $C D$ be the given straight lines. Pass planes through the line $A B$ and the points C and D. In the plane of $A B D E$, inclined the same way and making the same angle with the line $A B$ as $A B F C$, construct a parallelogram equal to $C A B F$. Draw $D G$ intersecting $A B$ produced in P. Join $P C$. Then $P C D$ is the required triangle.

Proof. Take any other point P^{\prime} in the line $A B$. Join $P^{\prime} D, P^{\prime} C$, and $P^{\prime} G$. Triangle $P^{\prime} C A=$ triangle $P^{\prime} G A$ and triangle $P C A=$ triangle $P G A$. Two sides and included angle being equal in each case. $\quad \therefore P^{\prime} C=P G$ and $P C=P G$.

Now $P^{\prime} D+P^{\prime} G>P D+P G$.

$$
\therefore P^{\prime} D+P^{\prime} C>P D+P C . \quad \text { Q. E. D. }
$$

By passing planes through $C D$ and the points A and B, by a similar construction we may construct a minimum-perimeter triangle upon $A B$ as base with its vertex in $C D$.

Also solved by F. R. HONEY.
II. Solution by G. B. M. ZERR, A. M., Ph. D., President and Professor of Mathematics, The Russell College, Lebanon, Va.

Let $x+b(a-x)=c y$ be the equation to $E F$ with $A B$ and $A Y$ as axes, and $A B, E F$ the given lines, $A B=a$. Then if $\cot \theta+b \cot \varphi=c$ the vertex C will move on $E F$: Let $A C=r, C B=s$.

Then $r+8=\frac{a(\sin H+\sin \psi)}{\sin (H+\psi)}=$ minimum

$$
\begin{equation*}
\cot \theta+b \cot \varphi=c . \tag{1}
\end{equation*}
$$

From (1), $\frac{d H}{d \psi}=-\frac{\sin H}{\sin \psi}$, from (2), $\frac{d H}{d \psi}=-\frac{b \sin ^{2} H}{\sin ^{2} \psi}$.
$\therefore \sin \varphi=b \sin ^{H}$, this in (2) gives
$\cot H=\frac{b^{2}+c^{2}-1}{2 c}, \cot \phi=\frac{c^{2}-b^{2}+1}{2 b c}, \cot \theta+\cot \varphi=\frac{A D+D B}{D C}=a / D C$,

$$
\therefore D C=\frac{2 a b c}{b^{3}-b^{2}-b+b c^{2}+c^{2}+1}
$$

$D C$ must be $>E G$ and $<H F$.
Let $A G=m, E G=n, A H=h, H F=k$.
Then $b=\frac{h n-k m}{a k+h n-a n-k m}, \quad c=\frac{a(h-m)}{a k+h n-a n-k m}$,

b must be less than unity or $E F$ may intersect $A B$.
Let $m=n=1, h=a=10, k=4 . \quad \therefore b=\frac{1}{6}, c=\frac{5}{2}, D C=\frac{36}{5}$.
$\cot \varphi=\frac{131}{15^{\prime}}, \cot \theta=19 . \quad \therefore H=4^{\circ} 27^{\prime} \quad 6^{\prime \prime}, \varphi=6^{\circ} 31^{\prime} 56^{\prime \prime}$.
$A D=D C \cot A=\frac{3 \%}{3}$.
89. Proposed by B. F. FINKEL, A. M.,M. Se., Professor of Mathematics and Physies, Drury College, Springfield, Mo.

Describe a circle tangent to three given circles. [From Chauvenet's Geometry, page 318, ex. 213.

Solution by G. B. M. ZERR, A. M., Ph. D., President and Professor of Mathematics, The Russell College, Lebanon, Va.; and F. R. HONEY, Ph. B., Instructor in Mathematies in Trinity College, New Haven, Conn.

In figure 2 let L, M, N be the circles radii a, b, c.
With M as center and radius $b-a$ describe a circle, also with N as center and radius $c-a$ describe a circle. Draw a circle through L tangent to the circles last described at T, S then the center of this circle is the center of one of the tangent circles. Similarly we can find seven other tangent circles.

Of the eight circles one is tangent to the three circles externally, one is tangent internally, three are tangent to two externally and one internally, and three are tangent to two internally and one externally.

In figure 1, to find a circle passing through a point E and tangent to two circles C, C^{\prime}. Let H be the point where the external common tangent meets $C^{\prime} C$ pro-

Fig. 1.
Fig. 2.
duced. Through $A^{\prime} B E$ describe a circle cutting $E H$ again in E^{\prime}. Draw $B R$ meeting $H E$ in U, and draw UP tangent to C, then the circle through $P E E^{\prime}$ is the circle required.

Two tangents can be drawn from U.
If we had used the point where the internal common tangent cuts $C C^{\prime}$ we would have determined two other circles, four in all, satisfying the condition.

Also solved by PROF. F. E. MILLER, and CHAS. C. CROSS. Prof. Cooper D. Schmitt did not solve the problem but gave several references where solutions are given. Pro\%. J. Scheffer gave a short historical note on the problem.

In a future issue of the Monthly, we expect to publish a somewhat exhaustive discussion of this very interesting problem.

[^0]The bisectors of the angles of the opposite sides (produced) of an inseribed quadrilateral cut the sides at the angular points of a rhombus.

Solution by G. I. HOPKINS. A. M., Professor of Mathematics in High School, Manchester, N. H.; J. K. ELLW00D, A. M., Principal of Colfax School, Pittsburg, Pa.; J. W. SCROGGS, Principal of Rogers Academy, Rogers, Ark.; NELSON L. RORAY, Professor of Mathematics, South Jersey Institute, Bridgeton, N. J.; HENRY N. DAVIS, Providence, R. I.; ALOIS F. KOVARIX, Professor of Mathematics, Decorah Institute, Decorah, Ia.; and the PROPOSER.

In the triangles $A E K$ and $L E C, \angle A E G=$ $\angle L E C, \angle E A K=\angle L C E$.
$\therefore \angle E K A=\angle E L C . \therefore \angle D K L=\angle C L K$.
$\therefore F H$ is perpendicular to $K L$ at its middle point. Similarly, $E L$ is perpendicular to $G H$ at its middle point.
\therefore In the right triangles $\mathrm{KOG}, \mathrm{KOH}, \mathrm{KO}=\mathrm{KO}$, $\mathrm{GO}=\mathrm{OH}$.
$\therefore K G=K H$. Similarly $K G=G L=L H$.
$\therefore K G L H$ is a rhombus.

This problem was also sotved in a similar manner by E.T. BUSH and S. L. ROWAN, of the Freshman Class of the University of Mississippi P. S. BERG. W. H. DRANE, F. R. HONEY, F. R. ROBBINS, B. F. SINE, J. SCHEFFER, and J. F. TRAVIS.

CALCULUS.

70. Proposed by J. OWEN MAHONEY, B. E., M. Sc., Graduate Fellow in Mathematics in Vanderbilt University, P. O., Lynnville, Tenn.

Prove $\int_{0}^{\infty} \frac{\cos n x}{1+x^{2 n}} d x=-i \frac{\pi}{2 n} \sum_{r=1}^{n} \epsilon^{2 r-1} e^{a i \omega} \omega^{2 r-1}$
where n is an integer. a is positive, and ω is $e^{i(=2 n)}$.
Solution by the PROPOSER.
Consider the integral $\int \frac{e^{i a y}}{1+y^{2 n}} d y$, where a is real and positive. The poles given by $y^{2 n}=-1$ or $z=i^{1 / n}=\cos (\pi / 2 n)+i \sin (\pi / 2 n)=e^{i(\pi / 2 n)}=\omega$ (say).

It is evident that all the roots of $y^{n}=i$ are given by $\omega^{2 r-1}$, where r may have the values $1,2,3, \ldots \ldots n$.

Hence $y=\omega^{2 r-1}$. About the origin O as center describe a semi-circle $A B D$ with a very large radius, limited by the axis of X (see figure.) About the poles ε, which correspond to the points $y^{n}=i$, describe circles with a very small radius ρ. The proposed function being holomorphic in the portion of the plane lying between the circumferences ρ and the contour $A B D A$, the integrals

$$
\int \frac{e^{i a y}}{1+y^{2 n}} d y
$$

relative to the circles and the boundary $A B D A$ are equal. For points on the circles $\rho y=\omega^{2 r-1}+\rho e^{i \theta}$, and the integral becomes

$$
\int_{0}^{2 \pi} \frac{e^{i \alpha}\left(\omega^{2 r-1}+\rho e^{i \theta}\right)}{1+\left(\omega^{2 r-1}+\rho e^{i \theta}\right)} i \rho e^{i \theta} d \theta,=i \int_{0}^{2 \pi} \frac{e^{a i \omega^{2 r-1}}}{2 n \omega \omega^{(2 r-1)(2 n-1)}} d \theta
$$

(when ρ becomes infinitesimal),
$=-i \int_{0}^{2 \pi} \frac{\left.\omega^{2 r-1} e^{a i \omega}\right)^{2 r-1}}{2 n} d H,=-i \frac{\pi}{n} \sum_{r=1}^{n} \omega^{2 r-1} e^{a i \omega}{ }^{2 r-1}$.

For points on the semi-circle $A B D, y=R \cos \theta+i R \sin \theta$, and the integral becomes,

$$
i \int_{0}^{\pi} \frac{R e^{i \theta} e^{a R(\cos \theta+i \sin \theta)}}{1+R^{2 n} e^{i 2 n \theta}} d \theta
$$

which is evidently equal to zero when $R=\infty$, and we have left the integral along $D A$, which is

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{e^{a i x}}{1+x^{2 n}} d x= & -i \frac{\pi}{n} \sum_{r=1}^{n} \omega^{2 r-1} e^{a i} \omega^{2 r-1}=\int_{-\infty}^{0} \frac{e^{a i x} d x}{1+x^{2 n}}+\int_{0}^{\infty} \frac{e^{a i x} d x}{1+x^{2 n}} \\
& =\int_{0}^{\infty} \frac{e^{a i x}+e^{-a i x}}{1+x^{2 n}} d x,=2 \int_{0}^{\infty} \frac{\cos a x}{1+x^{2 n}} d x
\end{aligned}
$$

Therefore $\int_{0}^{\infty} \frac{\cos \pi x d x}{1+x^{2 n}}=-i \frac{\pi}{2 n} \sum_{r=1}^{n} i i^{2 r-1} e^{a i \omega} \omega^{2 r-1}$.
Is this result correst? Forsyth gives, on page 41 of his Theory of Functions, the integral

$$
\int_{-\infty}^{\infty} \frac{\cos a x d x}{1+x^{2 n}}=-i \frac{\pi}{2 n} \sum_{r=1}^{n} \omega^{2 r-1} e^{a i} \omega^{2 r-1}
$$

[Prof. Zerr remarks that the result is correct, as is easily seen from the following:

Let $\cos a x /\left(1+x^{2 n}\right)=f(x)$.

$$
\begin{gathered}
\int_{-\infty}^{\infty} f^{\prime}(x) d x=\int_{0}^{\infty} f(x) d x+\int_{-\infty}^{0} f(x) d x=\int_{0}^{\infty} f(x) d x-\int_{\infty}^{0} f(x) d x=\int_{0}^{\infty} f(x) d x \\
\quad+\int_{0}^{\infty} f(x) d x=2 \int_{0}^{\infty} f(x) d x \\
\left.\therefore \int_{0}^{\infty} f(x) d x=\frac{1}{2} \int_{-\infty}^{\infty} f(x) d x,=-i \frac{\pi}{2 n} \sum_{r=1}^{n} \omega^{2 r-1} e^{\pi i} \omega^{2 r-1} \cdot\right]
\end{gathered}
$$

71. Proposed by J. C. CORBIN, Pine Bluff, Ark.

Form the differential equation of the third order, of which $y=c_{1} e^{2 x}+c_{2} e^{-3 x}+c_{3} e^{x}$ is the complete primitive.
I. Solution by EDGAR ODELL LOVETT, Ph. D., Princeton University, Princeton, I. J.
1°. This problem is a familiar one to students of differential equations. The original primitive together with the results of three successive differentiations, may be written

$$
\begin{aligned}
& y-e^{2 x} c_{1}-e^{-3 x} c_{2}-e^{x} c_{3}=0, \\
& y^{\prime}-2 e^{2 x} c_{1}+3 e^{-3 x} c_{2}-e^{x} c_{3}=0, \\
& y^{\prime \prime}-4 e^{2 x} c_{1}-9 e^{-3 x} c_{2}-e^{x} c_{3}=0, \\
& y^{\prime \prime \prime}-8 e^{2 x} c_{1}+27 e^{-3 x} c_{2}-e^{x} c_{3}=0 ;
\end{aligned}
$$

where $y^{\prime} \equiv \frac{d y}{d x}, \quad y^{\prime \prime} \equiv \frac{d^{2} y}{d x^{2}}, \quad y^{\prime \prime \prime} \equiv \frac{d^{3} y}{d x^{3}}$.
The above is a system of linear and homogeneous equations in the quantities $1, e^{2 x} c_{1}, e^{-3 x} c_{2}$, and $e^{x} c_{3}$, hence the determinant of their coefficients vanishes, that is

$$
\left|\begin{array}{llrl}
y & 1 & 1 & 1 \\
y^{\prime} & 2 & -3 & 1 \\
y^{\prime \prime} & 4 & 9 & 1 \\
y^{\prime \prime} & 8 & -27 & 1
\end{array}\right| \equiv\left|\begin{array}{ccrc}
y & 1 & 1 & 1 \\
y^{\prime}-y & 1 & -4 & 0 \\
y^{\prime \prime}-y & 3 & 8 & 0 \\
y^{\prime \prime}-y & 7 & -28 & 0
\end{array}\right| \equiv 4\left|\begin{array}{lll}
y^{\prime}-y & 1 & 1 \\
y^{\prime \prime \prime}-y & 3 & -2 \\
y^{\prime \prime \prime}-y & 7 & 7
\end{array}\right| \equiv 0 ;
$$

whence

$$
\left|\begin{array}{llr}
y^{\prime}-y & 1 & 0 \\
y^{\prime \prime}-y & 3 & -2 \\
y^{\prime \prime \prime}-y & 7 & 0
\end{array}\right| \equiv 2\left|\begin{array}{ll}
y^{\prime}-y & 1 \\
y^{\prime \prime \prime}-y & 7
\end{array}\right|=0
$$

or finally

$$
y^{\prime \prime \prime}-7 y^{\prime}+6 y=0
$$

is the differential equation of the third order whose complete primitive is

$$
y-a e^{2 x}-b e^{-3 x}-c e^{x}=0
$$

2°. If the problem be generalized and the complete primitive taken in the form

$$
y-a e^{m \cdot x}-b e^{-(m+n) x}-c e^{n x}=0
$$

the corresponding differential equation of the third order is readily found to be

$$
y^{\prime \prime \prime}-\left(m^{2}+m n+n^{2}\right) y^{\prime}+m n(m+n) y=0
$$

The values $m=2$ and $n=1$ give the original problem.
3°. If the problem be completely generalized and the original primitive taken in the form

$$
y-a e^{p x}-b e^{q x}-c e^{r x}=0
$$

the differential equation is

$$
y^{\prime \prime \prime}-(p+q+r) y^{\prime \prime}+(p q+q r+r p) y^{\prime}-p q r y=0
$$

Putting $p+q+r=0$ we have the second case above. If in addition to $p+$ $q+r=0, p=2$ and $q=1$, the first particular case appears again.
II. Solution by Walter hugh drane, A. M., Professor of Mathematies, Jefferson Military College, Washington, Miss.
(1) $y=c_{1} e^{2 x}+c_{2} e^{-3 x}+c_{3} e^{x}$. Differentiate (1).
(2) $\frac{d y}{d x}=2 c_{1} e^{2 x}-3 c_{2} e^{-3 x}+c_{8} e^{x}$. Subtract (1) from (2).
(3) $\frac{d y}{d x}-y=c_{1} e^{2 x}-4 c_{2} e^{-3 x}$. Differentiate (3).
(4) $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}==2 c_{1} e^{2 x}+12 c_{2} e^{-3 x}$. Subtract twice (3) from (4).
(5) $\frac{d^{2} y}{d x^{2}}-3-\frac{d y}{d x}+2 y=20 c_{2} e^{-3 x}$. Differentiate (5).

$$
\begin{align*}
& \frac{d^{3} y}{d x^{3}}-3 \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=-60 e_{2} e^{-3 x} . \quad \text { Add } 3 \text { times }(5) \text { to (6). } \tag{6}\\
& \frac{d^{3} y}{d x^{3}}-7 \frac{d y}{d x}+6 y=0 . \tag{7}\\
& \text { Q. E. D. }
\end{align*}
$$

See Johnson's Differential Equations, page 104, example 7.

MECHANICS.

61. Proposed by WILLIAM HOOVER, A. M., Ph. D., Professor of Mathematies and Astronomy, Ohio University, Athens, Ohio.

A body is suspended from a fixed point by an elastic string, which is stretched to ${ }^{*}$ double its natural length when the body is in equilibrium. Find how much the body must be depressed, so that when let go, it may just reach the point of suspension.

I. Solution by the PROPOSER.

Let a^{\prime}, a be the stretched and unstretched lengths of the string. $T=$ the tension, $\lambda=$ the modulus of elasticity, $W=$ the weight attached, and $x=$ the distance of the latter from the point of suspension at any time t from the beginning of motion.

By Hooke's law, $a^{\prime}=a[1+(T / \lambda)]$
By the problem, when $a^{\prime}=2 a, T=W$, and (1) gives $\lambda=W$.
The forces acting are W and T 'acting downward and upward ; then

$$
\begin{equation*}
\frac{W}{g} \frac{d^{2} x}{d t^{2}}=W-\frac{W(x-a)}{a} \tag{2}
\end{equation*}
$$

Multiplying both sides of (2) by $2(d x / d t)$ and integrating,

$$
\begin{equation*}
\frac{d x^{2}}{d t^{2}}=\frac{g}{a}\left(4 a x-x^{2}\right)+C . \tag{3}
\end{equation*}
$$

When $x=x^{\prime},(d x / d t)=0$, and (3) gives $C=-(g / a)\left(4 a x^{\prime}-x^{\prime 2}\right)$, and (3) is

$$
\begin{equation*}
\frac{d x^{2}}{d y^{2}}=\frac{g}{a}\left[\left(4 a x-x^{2}\right)-\left(4 a x^{\prime}-x^{\prime 2}\right)\right] \tag{4}
\end{equation*}
$$

When the body next comes to rest, $(d x / d t)=0$, and $x=0$, giving $4 a x^{\prime}-x^{\prime}=$ $=0$, or $x^{\prime}=4 a$, or $x^{\prime}=0 . \quad C=0$ in (3) gives

$$
\begin{equation*}
\sqrt{ }\left(\frac{g}{a}\right) d t=\frac{d x}{\sqrt{4 a x-x^{4}}} \tag{5}
\end{equation*}
$$

Integrating, $t=\left[\sqrt{ }\left(\frac{a}{g}\right) \text { versin }^{-1}\left(\frac{x}{2 a}\right)\right]_{0}^{4 a}=\pi \sqrt{ }\left(\frac{a}{g}\right)$
the time for the motion.
II. Solution by G. B. M. ZERR, A. M., Ph. D., President and Professor of Mathematics, The Russell College, Lebanon, Va.
 that the tention of the string is proportional to its extension beyond the natural length, holds throughout the motion.

Let $W=$ weight of body, $l=$ natural length of string, $a=$ extension due to weight $W, b=$ extension at the time body begins to rise after depression, $x=$ extension at any time $t, T=$ corresponding tension of string.

Then by Hooke's Law, $T=W x / a$
The differential equation of motion is

$$
\begin{gathered}
m \frac{d^{2} x}{d t^{2}}=W-T . \quad \text { But } W=M g, T=M g x / a . \quad \therefore \frac{d^{2} x}{d t^{2}}=(g / a)(a-x) \ldots \ldots(2) \\
\left(\frac{d x}{d t}\right)^{2}=(g / a)\left(2 a x-x^{2}\right)+B . \quad \text { When } t=0, x=b, \frac{d x}{d t}=0, B=(g / a)\left(b^{2}-2 a b\right)
\end{gathered}
$$

$$
\therefore\left(\frac{d x}{d t}\right)^{2}=(g / a)\left(2 a x-x^{2}+b^{2}-2 a b\right)=v^{2}
$$

When $x=0, v=\sqrt{\frac{g b}{a}(b-2 a)}=$ velocity of projection, $h=$ height of projection $=\frac{v^{2}}{2 g}=\frac{b}{2 a}(b-2 a)$, but $h=2 l$ and $a=l$.

$$
\therefore 2 l=(b / 2 l)(b-2 l) \text { or } b=l\left(1+V^{5}\right) \text {. }
$$

62. Proposed by J. SCHEFFER, A. M.. Hagerstown, Md.

A particle of mass m moves in the circumference of an ellipse with constant rate r. It is constrained to move in that circumference by attractive forces in the two foci. To determine the magnitude of these forces,
I. Solution by G. B. M. ZERR, A. M., Ph. D., President and Professor of Mathematics, The Russell College, Lebanon, Va.

Let P be the particle mass $m, C A=a, C B=b, P F=r, P F_{1}=r_{1}, C D=x$, $P D=y$, force along $r=j$, force along $r_{1}=f_{1}, R=$ normal reaction, $X=$ component of f and f_{1} par. allel to $A C, Y=$ component of f and f_{1} parallel to $C B, x^{2} / a^{2}+y^{2} / b^{2}=1$, the equation to the ellipse. The equations of motion are
$m\left(d^{2} x / d t^{2}\right)=X-R(d y / d s) ; m\left(d^{2} y / d t^{2}\right)$

$$
\begin{equation*}
=Y+R(d x / d s) . \tag{1,2}
\end{equation*}
$$

Now $d s / d t=v, \frac{d x}{d s}=\frac{a^{2} y}{\sqrt{a^{4} y^{2}+b^{4} x^{2}}}=\frac{a y}{b_{1} \sqrt{r r_{1}}}, \frac{d y}{d 8}=\frac{b^{2} x}{1 a^{4} y^{2}+b^{4} x^{2}}=\frac{b x}{a_{1} r r_{1}}$

$$
\begin{gathered}
\left(\frac{d x}{d t}\right)^{2}=\left(\frac{d 8}{d t}\right)^{2} \frac{a^{4} y^{2}}{a^{4} y^{2}+b^{4} x^{2}}=\frac{a^{2} v^{2} y^{2}}{b^{2}\left(a^{2}-e^{2} x^{2}\right)}=\frac{v^{2}\left(a^{2}-x^{2}\right)}{a^{2}-e^{2} x^{2}} . \\
\left(\frac{d y}{d t}\right)^{2}=\left(\frac{d 8}{d t}\right)^{2} \cdot \frac{b^{4} x^{2}}{a^{4} y^{2}+b^{4} x^{2}}=\frac{b^{2} v^{2} x^{2}}{a^{2}\left(a^{2}-e^{2} x^{2}\right)} . \\
\therefore \frac{d^{2} x}{d t^{2}}=-\frac{a^{2} v^{2} x\left(1-e^{2}\right)}{\left(a^{2}-e^{2} x^{2}\right)^{2}}=-\frac{b^{2} v^{2} x}{r^{2} r_{1}{ }^{2}}, \frac{d^{2} y}{d t^{2}}=\frac{a^{2} v^{2} y}{\left(a^{2}-e^{2} x^{2}\right)^{2}}=\frac{a^{2} v^{2} y}{r^{2} r_{1}{ }^{2}} . \\
R=\left(f+f_{1}\right) \cos F P\left(G=b^{2}\left(f+f_{1}\right) / \mathbf{V}\left(b^{4}+a^{2} e^{2} y^{2}\right)=\left(f+f_{1}\right) / 1\left(r r_{1}\right) .\right. \\
X=f_{1} \cos E P F_{1}+f \cos E P F=f_{1}(a e+x) / r_{1}-f(a e-x) / r . \\
Y=f_{1} \cos D P F_{1}+f \cos D P F=y\left(f_{1} r+f r_{1}\right) / r r_{1} .
\end{gathered}
$$

Substituting in (1) and (2),

$$
\begin{equation*}
-a b^{2} m v^{2} x=r r_{1}\left(a r x+a^{2} e r-b x \ f_{1}+r r_{1}\left(a r_{1} x-a^{2} e r_{1}-b x\right) f\right. \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
a^{2} b m v^{2}=r r_{1}(b r+a) f_{1}+r r_{1}\left(b r_{1}+a\right) f \tag{4}
\end{equation*}
$$

From (3) and (4) since $x=\left(r_{1}-r\right) / 2 e$,

$$
\frac{f_{1} r}{a^{2} r-b^{2} r_{1}}=\frac{\dot{f r}_{1}}{a^{2} r_{1}-b^{2} r}=\frac{a b m v^{2}}{2\left[\left(a^{2}+b^{2}+a^{2} b e^{2}\right) r r_{1}-2 a^{2} b^{2}\right]}
$$

II. Solution by WILLIAM H00VER, A. M., Ph. D., Professor of Mathematics and Astronomy, Ohio University, Athens, Ohio.

Let $\rho=$ the radius of curvature of the curve at any position, P, of the particle, $\phi=$ the angle included by either $S P$ or $H P, S$ and H being the foci, and $2 a$ $=$ the major axis. Let $C D$ be the semi-diameter conjugate to $C P, C$ being the center of ellipse.

The normal components of the central attractions must together equal the centrifugal force. We may assume the forces in S and H as proportional to some power of $C D$; and if the absolute intensities of the two forces are equal, say μ,

$$
\begin{equation*}
\left[\mu(C D)^{\mu}+\mu(C D)^{n}\right] \cos \phi=v^{2} / \rho . \tag{1}
\end{equation*}
$$

But $\rho \cos \phi=\frac{S P \cdot H P}{a}=\frac{C D^{2}}{a}$.
and (1) is $2 \mu(C D)^{n} \cdot \frac{C D^{2}}{a}=v^{2}$
For $v=a$ constant, requires that $n=-2$, showing plainly that the forces vary inversely as the product of the focal distances of the particle.

63. Proposed by A. H. BELL, HILLSBORO, III.

From a horizontal support at a distance of ten feet apart, a beam 5 feet long and 10 pounds weight is suspended by ropes attached to each end. The ropes are 3 and 5 feet respectively, in length. Required the angles made by the ropes and horizontal support. Also the stress upon each rope.

Solution by G. B. M. ZERR. A. M., Ph. D., President and Professor of Mathematics, The Russell College, Lebanon, Va.

Regarding the bar $D E$ as uniform so that the middle point is the center of gravity, we must have, for equilibrium, the three forces $A D, B E, G C$ passing through the same point C, with $G C$ perpendicular to $A B$.

The $\angle A B C=\angle C D E$, and the $\angle B A C=\angle C E D$.
Let $\angle A B C=H, \angle B A C=\boldsymbol{q}$, stress on $B E=R$, on $A D=R_{1}$, weight of $D E=W=10$ pounds. Also $A B=10, B E=E D=5, \quad A D=3, A E^{2}=100+25-100$
 $\cos \theta=25+9+30 \cos C D E$.

$$
\begin{aligned}
& \therefore 130 \cos \theta=91 . \quad \therefore \cos \theta=\frac{91}{13}=70000 . \quad \therefore A=45^{\circ} 34^{\prime} 23^{\prime \prime} . \\
& D R^{2}=100+9-60 \cos \varphi=25+25+50 \cos C E D . \\
& \therefore 110 \cos \phi=59 . \quad \therefore \cos \phi={ }_{110}^{59}=.53636 . \quad \therefore \phi=57^{\circ} 33^{\prime} 50^{\prime \prime} .
\end{aligned}
$$

Let figure 2 represent the force diagram, $a b=W, b c=R, a c=R_{1}, \angle a b c=$ $90^{\circ}-\theta, \angle b a c=90^{\circ}-\phi, \angle a c b=\theta+\varphi$.
$\therefore R=W \cos \varphi / \sin (\theta+\psi), R_{1}=W \cos \theta / \sin (\theta+\psi)$.
$\therefore R=5.5078$ pounds, $R_{1}=7.1881$ pounds.

DIOPHANTINE ANALYSIS.

61. Proposed by Sylvester robBizs, North Branch Depot, New Jersey.

Investigate that infinite series of prime, integral, rational scalene triangles where the sides of every term are consecutive numbers; then take the necessary factors from the proper KEY, and by an expeditious method, find in their order the areas of ten initial terms.

Solution by the PROPOSER.

I. The KEY to this series of rational triangles is $V=\frac{1}{1}, \frac{2}{1}, \frac{6}{3}, \frac{7}{4}, \frac{19}{19}, \frac{29}{18}$,
 $\frac{2685}{15} \frac{0}{3} 18$, etc. Regard the mean side as the base, and drop perpendicular from the opposite angle. Let $x=\frac{1}{2}$ base. Notice that $x-2$ and $x+2$ are the segments of the base, and $V\left[3\left(x^{2}-1^{2}\right)\right]$ is the altitude of the triangle. Find such values for x as will render $V\left[3\left(x^{2}-1^{2}\right)\right]$ rational.

When $x=1,2,7,26,97,362,1351,5042,18817,70226,262087, v\left[3\left(x^{2}\right.\right.$ $\left.\left.-1^{2}\right)\right]=0,3,12,45,168,627,2320,8733,32592,121635,453948$, etc.

These values of x are the half-bases of the several triangles. They are also the numerators of the even convergents in the expansion of $\sqrt{ } 3$. The values of $V\left[3\left(x^{2}-1^{2}\right)\right]$ are the altitudes of the same triangles, respectively, and they are also three times the denominators of the eveu convergents in the expansion of V. Multiply one-half the base of a triangle by its perpendicular height, or, three times the product of the terms of the nth even convergent, must give the area of the nth triangle in the series.

Thus, $3 \times 2 \times 1=6 ; 3 \times 7 \times 4=84 ; 3 \times 26 \times 15=1170 ; 3 \times 97 \times 56=16296$; $3 \times 362 \times 209=226974 ; 3 \times 1351 \times 780=3161340 ; 3 \times 5042 \times 2911=44031786 ; 3 \times$ $18817 \times 10864=613283664 ; 3 \times 70226 \times 40545=8541939510 ; 3 \times 262087 \times 151316$ $=118973869476$, etc.
II. Numerators of even convergents in expansion of $/ 3$: $1,2,7,26$, $97,362,1351,5042,18817,70226$, etc. Then $\frac{1}{}\left(7^{2}-1^{2}\right)=6 ; \quad\left(26^{2}-2^{2}\right)=84$; $\frac{\downarrow}{\delta}\left(97^{2}-7^{2}\right)=1170 ; \frac{1}{8}\left(362^{2}-26^{2}\right)=16296 ; \frac{1}{8}\left(1351^{2}-97^{2}\right)=226974$; etc.
III. Denominators of even convergents : $1,4,15,56,209,780,2911$, etc.
 $\left.-56^{2}\right)=226974$; etc.
IV. Let $x=$ the half-sum of the three sides of the triangle. Then $\frac{1}{8} x-1$, $\frac{1}{x} x$ and $\frac{1}{d x+1}$ are the remainders.
$(x)\left[\left(\frac{1}{3} x\right)-1\right]\left(\frac{1}{3} x\right)\left[\left(\frac{1}{3} x\right)+1\right]=$ square of triangle. $3\left(x^{2}-3^{2}\right)=$ square.
$V^{\prime}\left\{\left(\frac{1}{3} x^{2}\right)\left[\left(x^{2}-3^{2}\right) / 9\right]\right\} / x=\frac{1}{31}\left[\left(x^{2}-3^{2}\right) / 3\right]$, the radius of inseribed circle.
Put $x=y+6$; then $3\left[(y+6)^{2}-3^{2}\right]=$ square $=(m y+9)^{2}$.
$3 y^{2}+36 y+81=m^{2} y^{2}+18 m y+81 ; \quad 3 y+36=m^{2} y+18 m . \quad y=(18 m-36)$ $/\left(3-m^{2}\right)$; and $x=y+6=\left(18 m-18-6 m^{2}\right) /\left(3-m^{2}\right)$.

Say $m=13=\frac{1}{1}, \frac{2}{1}, \frac{5}{3}, \frac{7}{4}, \frac{19}{11} ; \frac{26}{15}$, etc. Substitute these values of m in the formula, and we obtain, when

$$
\begin{aligned}
& \left.m=1, x=3 \text {, and } \frac{1}{3} 1\left[x^{2}-3^{2}\right) / 3\right]=0 ; \\
& m=2, x=6 \text {, " " }==1 \text {; } \\
& m=\frac{3}{3}, x=21, \quad " \quad "=4 \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& m=19, x=291 \text {, " " }=56 \text {; } \\
& m=3 \frac{15}{5}, x=1086 \text {. " }=209 \text {; etc. }
\end{aligned}
$$

Here the several values of x, the half-sums of three sides, are also three times the aumerators of the even convergents in the expansion of $\sqrt{V} 3$, and the several values of $\frac{1}{3} v\left[\left(x^{2}-3^{2}\right) / 3\right]$ are the radii of the inscribed circles, respectively, and also the denominators of the even convergents. Multiplying the halfsum by the radius of the inscribed circle, or taking three times the product of the terms of the nth even convergent in the expansion of $\sqrt{ } 3$ will give the area of the nth triangle in the series where the common difference in sides is unity.
V. Denominators of odd convergents : $1,3,11,41,153,571,2131$, etc. $?\left(3^{2}-1^{2}\right)=6 ; \quad\left(11^{2}-3^{2}\right)=84 ; \quad\left(41^{2}-11^{2}\right)=1170 ; \quad\left(153^{2}-41^{2}\right)=16296 ;$ $\quad\left(571^{2}-153^{2}\right)=226974$; etc.
VI. Numerators of odd convergents : $1,5,19,71,265,989,3691$, etc. $\left(2 \frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}=6 ; \quad\left(9 \frac{1}{2}\right)^{2}-\left(2 \frac{1}{2}\right)^{2}=84 ; \quad\left(35 \frac{1}{2}\right)^{2}-\left(9 \frac{1}{2}\right)^{2}=1170 ; \quad\left(132 \frac{1}{2}\right)^{2}-\left(35 \frac{1}{2}\right)^{2}=$ 16296 ; $\left(494 \frac{1}{2}\right)^{2}-\left(132 \frac{1}{2}\right)^{2}=226974$; etc.
VII. Let $x+1, x$ and $x-1$ be the remainders. Then $3 x=$ the half-sum. $(3 x)(x+1)(x)(x-1)=$ square of area. $\quad 3\left(x^{2}-1^{2}\right)=$ square. Put $x=y+2 . \quad 3[(y+$ $\left.2)^{2}-1^{2}\right]=$ square $=(m y+3)^{2} . \quad 3 y^{2}+12 y+9=m^{2} y^{2}+6 m y+9 ; y=(6 m-12) /(3-$ $\left.m^{2}\right) ; x=\left(6 m-6-2 m^{2}\right) /\left(3-m^{2}\right)$. Consent that $m=\gamma / 3=\frac{1}{1}, \frac{2}{1}, \frac{f}{3}, \frac{f}{4}, \frac{11}{1}$, etc. Substitute in formula, and $x=1,2,7,26,97,362,1351$, etc.. and the areas of the triangles are as follows : $\quad V(3 \times 2 \times 1 \times 0)=3 \times 1 \times 0=0 ; ~, ~(6 \times 3 \times 2 \times 1)=3$ $\times 2 \times 1=6 ; v(21 \times 8 \times 7 \times 6)=3 \times 7 \times 4=84 ; \quad 1(18 \times 27 \times 26 \times 25)=3 \times 26 \times 15=$ $1170 ; V^{\prime}(291 \times 98 \times 97 \times 96)=3 \times 97 \times 56=16296 ; v^{\prime}(1086 \times 363 \times 362 \times 361=3 \times$ $362 \times 209=226974$, etc.
VIII. Odd convergents : $\quad 1 / 3=1, \frac{5}{3}, 19,11 . \frac{265}{158}$, etc. $6 \times 1 \times 1=6 ;(6 \times$ $3 \times 5)-6=84 ;(6 \times 11 \times 19)-84=1170 ;(6 \times 41 \times 71)-1170=16296 ;(6 \times 153 \times 265)$ $-16296=226974$; etc.
IX. Relation of areas : $14 \Delta_{n}-\Delta_{n-1}=\Delta_{n+1} ; M=14 . \quad 6 ; 14 \times 6=84$; $(14 \times 84)-6=1170 ;(14 \times 1170)-84=16296 ;(14 \times 16296)-1170=226974$, etc.
X. When x represents the half-base, $2 x-1,2 x$ and $2 r+1$ are the sides, $x-2$ and $x+2$ are the segments of the base,,$\left[3\left(x^{2}-1^{2}\right)\right.$ is the altitude of the triangle ; and $x_{1}\left[3\left(x^{2}-1^{2}\right)\right] /\left(4 x^{2}-1^{2}\right)$ is the half-sine of angle opposite base. Giving x same values as in I, the half-sines are found to be $\frac{2}{5}=(2 \times 1) /\left(2^{2}+1^{2}\right)$; $\frac{28}{8}=(7 \times 4) /\left(7^{2}+4^{2}\right) ; \quad \begin{gathered}399 \\ 901\end{gathered}=(26 \times 15) /\left(26^{2}+15^{2}\right) ; \quad{ }^{5433^{2}}{ }^{2} 55^{2}=(97 \times 56) /\left(97^{2}+56^{2}\right) ;$ $75658 /\left(362^{2}+209^{2}\right)=(362 \times 209) /\left(362^{2}+209^{2}\right)$; etc.

Multiply the product of two sides by one-half sine of included angle for area of triangle.

$$
[(2 \times 2)-1][(2 \times 2)+1]\left[(2 \times 1) /\left(2^{2}+1^{2}\right)\right]=3 \times 5 \times \frac{2}{5}=3 \times 1 \times 2=6 ;[(2 \times 7)-1]
$$

$[(2 \times 7)+1]\left[(4 \times 7) /\left(4^{2}+7^{2}\right)\right]=13 \times 15 \times \frac{28}{68}=3 \times 4 \times 7=84 ;[(2 \times 26)-1][(2 \times 26+1]$ $\left[(15 \times 26) /\left(15^{2}+26^{2}\right)\right]=51 \times 53 \times 389=3 \times 15 \times 26=1170 ; \quad[(2 \times 97)-1][(2 \times 97+1]$ $\left[(56 \times 97) /\left(56^{2}+97^{2}\right)\right]=193 \times 195 \times{ }_{12}^{54^{3} 92}=3 \times 56 \times 97=16296 ; \quad[(2 \times 362)-1][(2 \times$
 etc.

Here it should be noticed that in canceling both sides the denominator of the half-sine disappears, and three times the product of the terms of the nth even convergent in the expansion of $\sqrt{ } / 3$ brings the area to light ; also observe, since sides and denominator fall out of view, and factor 3 stands constant, the area must be determined by the numerator of these half-sines, and this series may be continued by use of Magic $M=14 ; 14 \times 2=28 ;(14 \times 28)-2=390 ;(14 \times 390)$ $-28=5432 ;(14 \times 5432)-390=75658 ;$ etc.

Also solyed by JOSIAH H. DRUMMOND, M. A. GRUBER, and G. B. M. ZERR.

AVERAGE AND PROBABILITY.

60. Proposed by B. F. FINXEL, A. M.,M. Sc.,Professor of Mathematics and Physics, Drury College, Springfield, Mo.

Four points are taken at random within an ellipse. What is the chance that they form a reentrant quadrilateral ?

Solution by G. B. M. ZERR. A. M., Ph. D., President and Professor of Mathematies, The Russell College, Lebanon, Va.

We will solve this problem for the quadrant, the semi-ellipse, and the whole ellipse.

Let $A B L I$ be the ellipse, and $A B^{\prime} L I^{\prime}$ the circumscribing circle; M, N, P the three random points ; through M, N, P draw $C D$, $E F, G H$ perpendicular to $A O, E F$ intersecting MP at K. The triangle will pass through all the possible variations by considering only those relative positions of the points in which $C D$ lies to the right of $G H$, and $E F$ between $C D$ and $G H$.

If the fourth point falls anywhere on the triangle formed by joining the points M, N, P, the quadrilateral thus formed will be
 reentrant.

Let $O A=a, O B=b, G P=x, C M=y, E N=z, G Q=x^{\prime}, C S=y^{\prime}, E R=z^{\prime}, E K=z^{\prime \prime}$, $\angle G O H=\theta, \angle C O D=\varphi, \angle E O F=\psi$.

Then we have $x^{\prime}=b \sin H, y^{\prime}=b \sin \varphi, z^{\prime}=b \sin \psi, v=1 /(\cos \varphi-\cos \theta), z^{\prime \prime}=v[x$ $(\cos \phi-\cos \psi)+y(\cos \psi-\cos \psi)]$.

Area $M N P=\frac{1}{2} a[x(\cos \varphi-\cos \psi)+y(\cos \psi-\cos \theta)+z(\cos \theta-\cos \varphi)]=u$, when $z<z^{\prime \prime}$. Area $M N P=\frac{1}{2} a[x(\cos \psi-\cos \varphi)+y(\cos \theta-\cos \psi)+z(\cos \varphi-\cos \theta)]=u_{1}$, when
$z>z^{\prime \prime}$. An element of surface at M is $a \sin \varphi d \varphi d y$, at N it is $a \sin \psi d \psi d z$, at P it is $a \sin H d \theta d x$.

The limits of θ are (for quadrant) 0 and $\frac{1}{2} \pi$; of $\varphi, 0$ and θ; of ψ, φ and θ; of $x, 0$ and x^{\prime}; of $y, 0$ and y^{\prime}; of $z, 0$ and $z^{\prime \prime}$, and $z^{\prime \prime}$ and $z^{\prime \prime}$.

Hence the required average area is,

$$
\Delta=\frac{\int_{0}^{\frac{1}{2} \pi} \int_{0}^{\theta} \int_{\phi}^{\theta} \int_{0}^{x} \int_{0}^{y}\left(\int_{0}^{z} u d z+\int_{z^{*}}^{z} u_{1} d z\right) a \sin \theta d H a \sin \varphi d \varphi a \sin \psi d \psi d x d y}{\int_{0}^{\frac{1}{2} \pi} \int_{0}^{\theta} \int_{\phi}^{\theta} \int_{0}^{x} \int_{0}^{y} \int_{0}^{z} a \sin \theta d \epsilon a \sin \varphi d \varphi a \sin \psi d \psi \cdot d x d y d z}
$$

$=\frac{384}{\pi^{3} b^{3}} \int_{0}^{\frac{1 \pi}{\pi}} \int_{0}^{\theta} \int_{\Phi}^{\theta} \int_{0}^{\alpha} \int_{0}^{y}\left(\int_{0}^{z^{\prime}} u d z+\int_{z^{\prime \prime}}^{z^{\prime}} u_{1} d z\right) \sin \theta \sin \varphi \sin \psi d \theta d \varphi d \psi d x d y$
$=\frac{96 a}{\pi^{3} b^{3}} \int_{0}^{\frac{1}{1} \pi} \int_{0}^{\theta} \int_{\Phi}^{\theta} \int_{0}^{x} \int_{0}^{y}\left\{[x(\cos \varphi-\cos \psi)+y(\cos \psi-\cos \theta)]^{2}+[x(\cos \varphi-\cos \psi)\right.$
$\left.+y(\cos \psi-\cos \theta)+b \sin \psi(\cos \theta-\cos \psi)]^{2}\right\} \sin \psi \sin \varphi \sin \psi \cdot v d \theta d \varphi d \psi d x d y$
$=\frac{32 a}{\pi^{3} b^{2}} \int_{0}^{\frac{1}{2} \pi} \int_{0}^{\theta} \int_{\phi}^{\theta} \int_{0}^{x}\left[6 x^{2} \sin \varphi(\cos \varphi-\cos \psi)^{2}+6 b x \sin ^{2} \varphi(\cos \varphi-\cos \psi)(\cos \psi\right.$
$-\cos \theta)+6 b x \sin \phi \sin \psi(\cos \phi-\cos \psi)(\cos \theta-\cos \phi)+2 b^{2} \sin ^{3} \phi(\cos \psi-\cos \theta)^{2}$
$\left.+3 b^{2} \sin \varphi \sin ^{2} \psi(\cos \theta-\cos \varphi)^{2}+3 b^{2} \sin ^{2} \varphi \sin \psi(\cos \theta-\cos \varphi)(\cos \psi-\cos \theta)\right]$
$\times \sin \theta \sin \varphi \sin \psi v d \theta d \varphi d \psi d x$.
$\Delta=\frac{32 a b}{\pi^{3}} \int_{0}^{\frac{1}{2} \pi} \int_{0}^{\theta} \int_{\Phi}^{\theta}\left[2 \sin ^{3} \theta \sin \varphi(\cos \varphi-\cos \psi)^{2}+2 \sin \theta \sin ^{3} \varphi(\cos \psi-\cos \theta)^{2}\right.$
$+3 \sin ^{2} \theta \sin ^{2} \varphi(\cos \varphi-\cos \psi)(\cos \psi-\cos \theta)+3 \sin \theta \sin \varphi \sin ^{2} \psi(\cos \theta-\cos \varphi)^{2}$
$+3 \sin ^{2} \theta \sin \varphi \sin \psi(\cos \varphi-\cos \psi)(\cos \theta-\cos \varphi)$
$\left.+3 \sin \theta \sin ^{2} \varphi \sin \psi(\cos \psi-\cos \theta)(\cos \theta-\cos \varphi)\right] \sin \theta \sin \varphi \sin \psi v d \theta d \varphi d \psi$
$=\frac{16 a b}{\pi^{3}} \int_{0}^{4 \frac{1}{2} \pi} \int_{0}^{\theta}\left[4 \sin ^{2} \theta \cos ^{2} \varphi+4 \sin ^{2} \varphi \cos ^{2} \varphi+4 \sin ^{2} \theta \cos ^{2} \theta+4 \sin ^{2} \varphi \cos ^{2} \theta\right.$
$+\sin ^{2} \theta \cos \theta \cos \varphi+\sin ^{2} q \cos \varphi \cos \theta-6 \sin \theta \cos \theta \sin \varphi \cos \varphi$
$+6 \cos ^{3} \theta \cos \varphi+6 \cos \theta \cos ^{3} \varphi+12+6 \cos ^{2} \theta+6 \cos ^{2} \varphi-36 \cos \theta \cos \varphi$
$-12 \sin \theta \sin \varphi-9(\theta-\phi) \sin \theta \cos \varphi+9(\theta-\phi) \sin \varphi \cos \theta] \sin ^{2} \theta \sin ^{2} \varphi d \theta d \varphi$
$=\frac{8 \pi b}{9 \pi^{3}} \int_{0}^{\frac{1}{2} \pi}\left(69 \theta+36 A \cos \theta-12 \theta \sin ^{2} \theta-12 \theta \sin ^{4} \theta-60 \sin \theta-45 \sin \theta \cos \theta\right.$
$-10 \sin ^{3} \theta \cos \theta+3 \sin ^{5}(H \cos \theta) \sin ^{2} H d^{H}$
$=\frac{a h}{\pi}\left(\frac{35}{12}+\frac{16}{3 \pi}-\frac{131}{3 \pi^{2}}\right)$.
For the semi-ellipse above the major axis, the limits of θ are 0 and π, and those of the other variables the same as above. The number of ways the three points can be taken in the semi-ellipse is eight times the number of ways in a quadrant, and hence we get
$\Delta_{1}=\frac{a b}{9 \pi^{3}} \int_{0}^{\pi}\left(69 \theta+36 H \cos \theta-12 H \sin ^{2} \theta-12 \theta \sin ^{4} \theta-60 \sin \theta-45 \sin \theta \cos \theta\right.$
$\left.-10 \sin ^{3} A \cos \theta+3 \sin ^{5} H \cos \theta\right) \sin ^{2} H d \theta=\frac{n b}{\pi}\left(\frac{35}{24}-\frac{32}{3 \pi^{2}}\right)$.

For the limits of A are 0 and 2π, and the points can be laken eight times the number of ways in semi-ellipse. Hence
$\Delta_{2}=\frac{a b}{72 \pi^{3}} \int_{0}^{2 \pi}\left(69 \theta+36 \theta \cos \theta-12 \theta \sin ^{2} \theta-12 H \sin ^{4} \theta-60 \sin \theta-45 \sin \theta \cos \theta\right.$
$\left.-10 \sin ^{3} \theta \cos \theta+3 \sin ^{5} \theta \cos \theta\right) \sin ^{2} \theta d t=35 a b / 48 \pi$ 。
Let C, C_{1}, C_{2} be the respective chances required.

$$
\begin{gathered}
C=\frac{4 \Delta}{\pi a b}=\frac{4}{\pi^{2}}\left(\frac{35}{12}+\frac{16}{3 \pi}-\frac{131}{3 \pi^{2}}\right) ; C_{1}=\frac{4 \Delta_{1}}{\pi a b}=\left(\frac{35}{42}-\frac{32}{3 \pi^{2}}\right) \\
C_{2}=\frac{4 \Delta_{2}}{\pi a b}=\frac{35}{12 \pi^{2}} .
\end{gathered}
$$

MISCELLANEOUS.

58. Proposed by EDMUND FISH, Hillsboro. III.

The longest noonday winter shadow of an upright object is found to be seven times as long as the shortest summer shadow of the same object. Required the latitude of the place.

1. Solution by S. HART WRIGHT, A. M., M. D., Ph. D., Penn Yan, N. Y.

In the right plane triangles $A B C$ and $A P C$, let the vertical $A C(=$ unity $)$ be the rod that casts a shadow from C to B, and from C to P, when the sun is at S and D. Extend $C A$ to the zenith $Z, B A$ to S and $P A$ to D. Bisect $D A S$ with QA. Let $\angle B A C=\chi=Z A S$. $D A S$ is double the obliquity of the ecliptic $=2 \delta=\angle P . A B=46^{\circ} 54^{\prime} 30^{\prime \prime}=v$. $D A Q=S A Q=\delta$, and Q must be on the equator, and $Q A Z=$ the required latitude $=\lambda . \quad C P=7 C B . \quad$ Put 7 $=m$, and $\tan ^{-1} m=\beta=81^{\circ} 52^{\prime} 12^{\prime \prime}$. We have $C B=$ $\tan \chi$, and $C P=\tan (\chi+v)$, and $m \tan \chi=\tan (\chi+v)$, a trigonometric equation, from which we derive $\sin (2 \chi$ $\pm v)=\cot \left(\beta \mp 45^{\circ}\right) \sin v$. Four values of χ result, the
 upper signs giving the only acceptable value of $\chi=14^{\circ}$ $57^{\prime} 30^{\prime \prime}$. The other signs make the $\angle P A C>90^{\circ}$. Now $\lambda=\chi+\delta=38^{\circ} 24^{\prime} 45^{\prime \prime}$ north or south, as the seasons are interchangeable on each side of the equator.
II. Solution by G. B. M. ZERR, A. M., Ph. D., President and Professor of Mathematics, The Russell College, Lebanon, Va.

Let $A C$ be the upright object length $=l, C P$ the earth, $S B$ the summer sun, $D P$ the winter sun. Let $\phi=$ latitude, $\delta=$ north,$-\delta=$ south declination of the sun, and let the winter shadow be n times as long as the summer shadow.

Then $\angle C A B=(\phi-\delta), \quad \angle C A P=(\phi+\delta), \quad C P=n . C B, C P=l \tan (\phi+\delta)$, $C B=l \tan (\phi-\delta)$.
$\therefore l \tan (\phi+\delta)=n l \tan (\phi-\delta)$.
$\therefore(n+1) \tan ^{2} \phi \tan \delta-(n-1) \tan \phi \sec ^{2} \delta+(n+1) \tan \delta=0$.

$$
\tan ^{2} \phi-\frac{2(n-1) \tan \phi}{(n+1) \sin 2 \delta}+1=0
$$

$\therefore \tan \phi=\frac{(n-2) \pm 1\left[(n-1)^{2}-(n+1)^{2} \sin ^{2} 2 \delta\right]}{(n+1) \sin 2 \delta}$
Now $\delta=23^{\circ} 27^{\prime} 30^{\prime \prime}, n=7 . \quad \therefore \tan \phi=.793428$ or 1.26035 .
$\therefore \phi=38^{\circ} 25^{\prime} 46^{\prime \prime}$ or $51^{\circ} 34^{\prime} 14^{\prime \prime}$.
The two values of $\tan \phi$ are equal when $n=(1+\sin 2 \delta) /(1-\sin 2 \delta)$. $\therefore n=6.4118, \phi=45^{\circ}$. When $\phi=\delta$, and $\phi+\delta=90^{\circ}, n$ is infinite.
In the first case the summer shadow is zero and the winter shadow is fi-
nite; in the second case, the winter shadow is infinite and the summer shadow is finite.

In formula (A), δ and n can have any values within proper limits.
Also solved by W. W. LANDIS, and J. SCHEFFER.
59. Proposed by J. A. Calderhead, M. Sc., Professor of Mathematics, Curry University, Pittsburg, Pa.

When a cylindrical china jar, standing upon the ground, receives the sun's rays obliquely, a bright curve is observed to form itself at the bottom of the jar, and it is found that the shape and dimensions of this curve are not affected by the varying elevations of the sun: account for this latter circumstance, and determine the nature of the bright curve. [From Parkinson's Optics.]

Solution by ALFRED HUME, C. E., D. Sc., Professor of Mathematics, University of Mississippi, University, Mississsppi.

All rays striking any element of the cylindrical surface lie in a vertical plane. Their reflections form the other face of the dihedral angle whose bisector passes through the axis of the cylinder. These reflected rays intersect the base of the cylinder in a straight line. There is thus formed a system of lines, and the bright curve observed is their envelope. The altitude of the sun does not affect the position of the vertical planes; and, therefore, the intersections with the bottom of the jar are unchanged, and the continual intersection of the consecutive lines so formed produces a curve invariable as to its shape and size.

The bright curve is the caustic by reflection for the circle, the incident rays being parallel. The following general property of caustics by reflection for parallel rays is established in Price's Infinitesimal Calculus: "The distance from the incident point in the reflecting curve to the point of intersection of two consecutive reflected rays, is equal to one-fourth of the chord of the circle of curvature at the point of incidence which is parallel to the incident ray."
A. Take the center of the circle as the origin, the X-axis parallel to the incident rays, the Y-axis perpendicular to them. Let $A B$ be an incident ray, $B C$ its reflection, the angle between them being 20 . Take $B P$ along $R C$ equal to one-half of $D B, D$ being the intersection of $A B$ with the Y-axis. Then, according to the principle quoted above, P is a point of the caustic. To find the locus of P : Draw $O B$, denoting it by a. From P drop a perpendicular to $A B$ meeting it at H. Denoting the coördinates of P by x and y,
$x=D B-H B=a \cos \theta-\frac{1}{2} a \cos \theta \cos 2 \theta$,

$$
y=O D-P H=a \sin \theta-\frac{1}{2} a \cos \theta \sin 2 \theta
$$

From these $x=\frac{3}{4} a \cos \theta-\frac{1}{4} a \cos 3 \theta$,

$$
\text { and } y=\frac{3}{4} a \sin \theta-\frac{1}{4} a \sin 3 \theta
$$

These may be written

$$
\begin{aligned}
& \left.x=\left(\frac{1}{2} a+\frac{1}{4} a\right) \cos \theta-\left(\frac{1}{4} a\right) \cos \left[1 \frac{1}{2} a+\frac{1}{4} a\right) /\left(\frac{1}{2} a\right)\right]^{\theta}, \\
& \quad \text { and } y=\left(\frac{1}{2} a+\frac{1}{2}\right) \sin \theta-\left(\frac{1}{}\right) \sin \left[\left(\frac{1}{2} a+\frac{1}{4} a\right) /\left(\frac{1}{2} a\right)\right]^{\theta} .
\end{aligned}
$$

These are the well-known equations of an epicycloid, the radii of the fixed and rolling circles being $\frac{1}{2} a$ and $\frac{1}{a} a$ respectively.
B. The following geometrical solution is very much like one given in Wood's Optics, and was suggested by it.

Referring to the same figure, erect at P a perpendicular to $C B$, meeting $O B$ at E. Comparing the similar triangles $E P B^{\prime}$ and $O D B, E D: D B=B P: B D$ $=1: 2$.

If, then, upon $E B$, the half of $O B$, as diameter, a circumference be drawn its intersection with $C B$ will be a point of the caustic. With O as center and $E O$ as radius describe a semi-circle, intersecting the X-axis at K.

The $\angle E O K=0$, and arc $E K=\frac{1}{2} a \theta$.
Also, since $\angle E B P=0$, the angle at the center measured by are $E P=20$; and arc $E P=\$ a .20=\frac{1}{2} a .0$.

Hence arc $E P=$ arc $E K$.
The locus of P is, therefore, generated by the circle EPB rolling on the circle $E K$, the points P and K being originally in contact.

Of course the problem may be solved without assuming the property quoted from Price. In Rice and Johnson's Differential Calculus an excellent solution is outlined.

Also solved by C. W. M. BLACK, S. H. WRIGHT, and B. F. FINKEL.

PROBLEMS FOR SOLUTION.

ARITHMETIC.

97. Proposed by J. A. Calderhead, M. Sc., Professor of Mathematics. Curry University, Pittsburg, Pa.

In what time will $\$ 4000$ amount to $\$ 5134.96$, interest at 6% payable annually?
** Solutions of these problems should be sent to B. F. Finkel, not later than July 10 .

GEOMETRY.

97. Proposed by CHAS. C. CROSS, Zibertytown, Md.

Prove by pure geometry: The radius of a circle drawn through the centers of the inscribed and any two escribed circles of a triangle is double the radius of the circumscribed circle of the triangle.
98. Froposed by EDW. R. ROBBINS, Master in Mathematics and Physics, Lawrenceville School, Lawrenceville, N. J.

Construct a circle which shall pass through two given points and touch a given circle, (1) when the distance between the points is less than the diameter of the circle, and (2) when it is greater.
** Solutions of these problems should be sent to B. F. Finkel, not later than July 10 .

MECHANICS.

69. Proposed by B. F. FINKEL, A. M.,M. Se., Professor of Mathematies and Physies, Drury College, Springfield, Mo.

A rough sphere of radius a and radius of gyration K, capable of rotating about its center, is initially at rest ; another sphere of $1 / n$ the mass and of radius b, and radius of gyration k, is placed gently on it, having initially an angular velocity is about the common normal which makes an acute angle α with the vertical drawn upwards. Prove that the second sphere will not roll off provided

$$
\omega^{2}>\frac{2 \mu(a+b) g}{(3 \mu+1) b^{2}}\left[(3 \mu+1)^{2}-4 \mu^{2} \cos ^{2} \alpha\right] \sec \alpha, \text { where } \mu=a^{2} / n K^{2}+b^{2} / k^{2} .
$$

[From Routh's Rigid Dynamics.]
70. Proposed by CHAS. E. MEYERS, Canton, Ohio.

A homogeneous sphere, radius r, having an angular velocity ω, gradually contracts by cooling. What will be the angular velocity at the instant the radius becomes $\frac{1}{2} r$?
${ }^{*} *$ Solutions of these problems should be sent to B. F. Finkel, not later than August 10 .

DIOPHANTINE ANALYSIS.
68. Proposed by M. A. GRUBER, A. M., War Department. Washington, D. C.

Find a general value for p in the expression $4 p+1=$ the sum of two squares.
69. Proposed by JOSIAH H. DRUMMOND, LL. D., Counselor at Law, Portland, Me.

Two right angled triangles have the same base which is a mean proportional between the two perpendiculars: find a general solution, that will give integral values for all the sides of both triangles.

70. Proposed by PROF. CHARLES CARROLL CROSS, Libertytown, Md.

Give methods for decomposing numbers into squares, cubes, or biquadrates and show that 61×200^{3} is the sum of ten cube numbers and that 844933 is the sum of eleven biquadrates in thirteen different ways. [From The Mathematical Magazine, Vol. II, No. 10.]
*** Solutions of these problems should be sent to J. M. Colaw, not later than August 10 .

AVERAGE AND PROBABILITY.

65. Proposed by J. SCHEFFER, A. M., Hagerstown, Md.

What is the average rate of the sun's motion in declination from the equator to the solstices?

66. Proposed by REV. W. ALLEN WHITWORTH, A. M.

A rod 9 feet long is to be divided into three parts, of which A is to have the largest, B the next, and C the smallest. If the two fractures are made at random, A 's, B^{\prime} 's, and $C^{\prime \prime} s$ expectations will be respectively 66,30 , and 12 inches. But, if one fracture be made at random and the larger portion of the rod be then divided at random, their expectations will be 64,31 , and 13 inches.
67. Proposed by B. F. FINKEL, A. M.,M. Se., Professor of Mathematics and Physics, Drury College, Springfield, Mo.

A person writes n letters and addresses n envelopes; if the letters are placed in the envelopes at random, what is the probability that every letter goes wrong? [From Hall and Knight's Higher Algebra.]
*** Solutions of these problems should be sent to B. F. Finkel, not later than August 10 .

MISCELLANEOUS.

62. Proposed by G. B. M. ZERR, A. M.,Ph. D., President and Professor of Mathematics, The Russell College, Lebanon, Va.

How many bushels of wheat will a conical bin 8 feet in diameter at base and 12 feet high, hold, if part of the bin is cut off by a plane parallel to the side and passing through the center of the base ?
63. Proposed by F. P. MATZ, D. Sc., Ph. D., Professor of Mathematics and Astronomy, Irving College, Mcchanicsburg, Pa .

Show that the path of a projectile moving with a constant velocity is an inverted catenary of equal strength.
${ }^{*}{ }^{*}$ Solutions of these problems should be sent to J. M. Colaw, not later than August 10.

EDITORIALS.

The degree of Civil Engineer has been conferred on our valued contributor, Fremont Crane, by the University of Minnesota.

In our next issue will appear an article on Symmetric Functions, by Professor E. D. Roe, Associate Professor of Mathematics in Oberlin College, now at Erlangen, Germany.

Dr. David Eugene Smith, Professor of Mathematics in the Michigan State Normal School, has accepted the Presidency of the New York State Normal School, at Rockport.

In our last issue, the last two pages of the Monthly were hurried into print without our having read the proof. That we might have the opportunity of eliminating some of the errors which thus appeared in them, we have had those two pages reprinted and bound in the present issue. This, we are sure, will be appreciated by those who wish to have the volumes of the Monthly bound.

The University of Chicago. During the summer quarter (July 1 to September 23, 1898) the following mathematical courses (four or five hours weekly) will be offered :-By Associate Professor Maschke: Theory of Invariants; Functions of a Complex Variable ;-By Assistant Professor Young: Mathematical Pedagogy (to August 15); Culture Calculus ; Plane Trigonometry (to August

[^0]: 90. Proposed by G. B. M. ZERR, A. M., Ph. D., President and Professor of Mathematics in Russell College, Lebanon, Va.
